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Introduction

Goal

Give an overview of the Music Information Retrieval research field
while focusing on the opportunities for digital musicology. More
detail about two MIR projects will be given:
(i) Tarsos: tone scale extraction and analysis.
(ii) Panako: acoustic fingerprinting.
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MIR introduction

Definition

Music Information Retrieval (MIR) is the interdisciplinary science
of extracting and processing information from music.

MIR combines insights from musicology, computer science, library
sciences, psychology, machine learning and cognitive sciences.
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MIR introduction

MIR tasks process Musical information. Musical information can be
categorized into signals and symbols.

Definition

Signals are representations of analog manifestations and replicate
perception. Symbols are discretized, limited and replicate content.

Example: The task of transcribing a lecture is a conversion of a signal into the

symbolic domain. An audio recording serves as input, a text is the output. The

symbolic representation is easy to index but lacks nuance.
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Tasks - Transcription

Fig: Music transcription

Transcription

I Source separation

I Instrument recognition

I Polyphonic pitch estimation and
chord detection

I Tempo and Rhythm extraction

Signal → symbolic
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Tasks - Structure analysis

Signal → symbolic

Fig: Structural analysis
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Tasks - Music recommendation

Fig: Spotify automatically

generates playlists based on

listening behavior.

Music recommendation and
automatic play-list generation.

I Content based: Signal →
symbolic.

I Based on (listening) behavior:
Symbolic → symbolic.
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Tasks - Other Tasks
I Score following: automatic score page turning or trigger effects

based on musical content.
I Emotion recognition: label audio according to emotional

content.
I Automatic Cover song identification.
I Optical music recognition: convert images of scores to digital

scores.
I Symbolic music retrieval.
I Automatic genre recognition.

MIR Tasks

Most tasks enable to browse, categorize, query, discover music in
large databases.
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Musical Information

Signals
I Recorded musical

performances
I Video
I Audio
I MIDI
I Motion capture

I Scans of scores

Symbols
I Meta-data

I Artist
I Title
I Album-name
I Label
I Composer
I Instrumentation

I Lyrics

I Tags, reviews, ratings

I Digitized scores
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Musical Information - Examples

Digital representations of Liszt’s Liebestraum No.3.

Fig: Scanned score of Liszt’s

Liebestraum No.3.

I Scanned score

I MusicXML score

I MIDI synthesis

I MIDI performance
I Audio recording of a

performance
I Arthur Rubinstein
I Daniel Barenboim
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file://./data/01.musicXML-liebestraum_no_3.xml
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Musical Information

Scores can be seen as a model of a performance.

Quote

Essentially, all models are wrong, but some are useful.
- George E. P. Box

Models aim to reduce dimensions, complexity and improve
understanding and readability.
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’Solved’ MIR Tasks

I Monophonic pitch estimation [4, 9, 12]

I Content based audio search [18]

I Automatic Genre classification
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Challenging Tasks

Un-mix the mix

Decomposing a mixed audio signal is very hard. Masking,
overlapping partials make e.g. polyphonic pitch detection hard.

Fig: How to unmix the mix? 15/64
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Tools - Sonic Visualizer

Fig: Sonic Visualizer, an application

for viewing and analysing the

contents of music audio files.

Sonic Visualizer offers a
plugin-system with:

I Beat tracking

I Onset deteciton

I Pitch tracking

I Melody detection

I Chord estimations

sonicvisualiser.org
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http://www.sonicvisualiser.org
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Tools - Tartini

Fig: Tartini an application for

pitch analysis.

Specialized tool for pitch
analysis

I Vibrato analysis

I Pitch contour

I Transcription

http://miracle.otago.ac.nz/tartini
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Tools - Music21

Fig: music21: programming

environment for symbolic music

analysis

Symbolic music queries:

I Query rhythmic features

I Melodic contours

I Chord progressions,...

http://web.mit.edu/music21/
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Tools - Tarsos

Fig: Tarsos: tone scale extraction

and analysis

Extracting and analysing tone
scales from music.

I Tone scale extraction

I Tone scale analysis

I Transcription of ethnic
music

http://0110.be/Software
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MIR Methods

Fig: Input → feature(s) → feature processing → output.
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MIR Methods

Bag of features approach to represent e.g. a musical genre.
Sometimes more than 100 features are used[8].

I MFCC, timbral characteristic

I Spectral centroid

I Spectral moment

I Zero crossing rate

I Number of low energy frames

I Autocorrelation lag

I Frequency

I ...
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Methodological problems

MIR research is often limited by (over?) simplification:

I It focuses mainly on classical western art music or popular
music with ethnocentric terminology like scores, chords, tone
scale, chromagrams, instrumentation, rhythmical structures.

I It is mainly goal oriented and pragmatic (MIREX) without
explaining processes[1]. More engineering than science?

I Unclear which features correlate with which cognitive processes.

I It is mainly concerned with a limited, disembodied view on
music: disregarding social interaction, movement, dance, the
body, individual or cultural preferences.
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Methodological problems

Quote

Essentially, all MIR-research is wrong, but some is useful.
- Me

What follows are two examples of what aims to be useful
MIR-research.
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Introduction

Tarsos

Tarsos[14, 15] is a tool to extract, analyze and document tone scales
and tone scale diversity.

It is mainly useful for analyzing music with an undocumented
tone-scale. This is the case for a lot of ethinic music.
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Introduction

Tarsos was developed to analyze the
dataset of the museum for Central Africa,
Tervuren

I 30000 digitized sound recordings

I 3000 hours of music

I Meta-data database with contextual
data

Fig: Locations of recordings
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Demo

Fig: Tarsos live demonstration
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Demo
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Pitch Class Histogram construction
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Pitch Class Histogram construction
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Pitch Class Histogram construction
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Examples
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Fig: A unequally divided pentatonic tone scale with a near perfect fifth

consisting of a pure minor and pure major third. 31/64
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Concept of tone scale
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Fig: Pitch steps shift upwards during a Finnish joik.
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Concept of Tone
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Fig: Tonal center of Western vibrato.
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Concept of Tone II
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Fig: Pitch gesture in an Indian raga.
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Concept of Tuning
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Fig: Detuning of a mono-chord during performance.
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Relating Timbre and Scale

Question

Why are some tones scales or pitch intervals much more popular
than others? Why are instruments tuned the way they are?

There is a theory[13, 10] that relates scale and timbre. The theory
identifies points of maximum consonance that can be used to
construct an optimal1 scale.

1In terms of consonance
36/64
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Relating Timbre and Scale
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37/64



FACULTY OF ARTS AND PHILOSOPHY 

Relating Timbre and Scale

Fig: Screenshot of automatic timbre-scale mapping.
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Relating Timbre and Scale

The Theory is currently not well supported by a lot of data. The
dataset with African music has a large diversity in instrumentation
and tone scales and offers an opportunity to support the theory.

39/64



FACULTY OF ARTS AND PHILOSOPHY 

Conclusion

Question

Tarsos offers opportunities to answer basic musicological questions:

I Is there a change in tone scale use over time? Is the 100 cents
interval used more in recent years? Is there an acculturation
effect?

I Is there a systematic relation between timbre and scale?
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What is Acoustic Fingerprinting

Feature

Extraction

Audio Fingerprint

Construction
Matching

Other
Fingerprints

Features Fingerprint
Identified Audio

Figure: A generalized audio fingerprinter scheme.

1. Audio is fed into the system,

2. Features are extracted and fingerprints constructed

3. The fingerprints are compared with a database containing
fingerprints of reference audio.

4. The audio is either identified or, if no match is found, labeled as
unknown. 41/64
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Why Audio Fingerprinting?

I Identifying short audio fragments

I Duplicate detection in large digital music archives

I Digital rights management applications (SABAM)

I Music structure analysis

I Analysis of techniques and repertoire in DJ-sets

I Synchronization of audio (and video) streams

I Alignment of extracted features with audio[17]

Fig: Shazam music

recognition service
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Demo Panako

Panako[16]
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System Design

Fig: Spectrogram in Aphex

Twin’s Windowlicker

Current audio fingerprinting systems
use fingerprints based on:

I Spectral Peaks [18, 16, 6]

I Onsets in spectral bands [5]

I Other features [2, 7, 11, 3]
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System Design

Fig: Step 1, extracting spectral peaks.
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System Design

Fig: Step 2, creating fingerprints by combining spectral peaks.
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System Design
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Opportunities for digital musicology

Acoustic fingerprinting can provide opportunities for digital
musicology:

1. Analysis of repetition within songs

2. Comparison of versions/edits

3. Audio and audio feature alignment to share datasets

4. DJ-set analysis
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Musical structure analysis

Fig: Repetition in ’Ribs Out’ by Fuck Buttons2.
2Unfortunately the best example I could find
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Radio Edit vs. Original

Fig: Radio edit vs. original version of Daft Punk’s Get Lucky.
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Exact Repetition Over Time

Fig: How much cut-and-paste is used on average for a set of 20000

recordings.
51/64
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Synchronization of audio streams

Fig: Two similar audio

streams out of sync

Audio synchronization can be used
for:

I Aligning unsynchronized audio
streams from several
microphones

I Aligning video footage by using
audio

I Aligning audio and extracted
features

I Aligning audio and data[17]
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Synchronization of audio streams

Fig: Microphone placement for

symphonic orchestra and

synchronization

Audio synchronization using acoustic
fingerprinting is submillisecond
accurate. If microphone placement
spans several meters and with the
speed of sound being 340.29m/s:

Distance (m) Delay (ms)

1 3
2 6
3 9
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Analysis of repertoire and techniques used in

DJ-Sets

Fig: a DJ

An extension of the spectral peak
fingerprinting method allows
time-stretching, pitch-shifting and tempo
change[16]. Given a DJ-set and reference
audioa the following can be extracted
automatically:

I Which parts of which songs were
played and for how long

I Which modifications were applied
(percentage modification of time and
frequency)

aTracklists of DJ-Sets can be found on http://www.1001tracklists.com/54/64

http://www.1001tracklists.com/
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Practical Audio Fingerprinting

Panako[16] was used to generate the example data3, an open source
audio fingerprinting system available on http://panako.be.

These subapplications of Panako were used:

I monitor during the live demo.

I compare for the comparison, structure analysis.

I monitor can also be used for DJ-set analysis.

Other usable fingerprinters are audfprint and echoprint.

3Some methods implemented within
Panako are patented (US6990453).
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