Real-time signal synchronization with acoustic
fingerprinting

Ward Van Assche

Supervisor(s): Joren Six, Marleen Denert

Abstract— Many experiments use sensors such as accelerometers and
pressure sensors. A common problem after these experiments is the syn-
chronization of data of each sensor. The current synchronization system
requires each sensor to be connected to a microphone recording the sound
of the environment. With efficient audio-to-audio alignment techniques the
latency can be detected very accurately. Because the detection is a post-
processing step a real-time and more user-friendly solution is desirable.
This paper explores the possibilities to do this. To use the current syn-
chronization algorithms in real-time they had to be changed and optimized
in different ways. The new system resulted in a Max/MSP module which
makes it possible to run the synchronization in real-time without writing a
single line of code.

Keywords— Signal Synchronization, Audio Alignment, Real-Time,
Acoustic Fingerprinting, Cross-covariance, Digital Signal Processing

I. INTRODUCTION

XPERIMENTS in various research areas use sensors and

video cameras to capture the environment. Before sensor
data and video recordings can be analyzed properly they have
to be synchronized accurately in time. This is rather difficult
because of various reasons. The first problem is that the sen-
sor datastreams can be heterogeneous: the sample rate can vary
and the resulted data can be different (video data or numerical
samples). Another difficulty is to cope with the fact that some
data sources are sampled unreliably. This can lead to dropped
samples and drift which cause unexpected latency changes.

Most techniques require a post-processing step: the data has
to be synchronized manually or by software after the experi-
ment. This is impractical and time-consuming. A technique
which can avoid this is desirable.

The most straightforward way to perform synchronization is
by adding markers. This technique is described in [1]. How a
marker is placed depends on the type of stream. A short sound
can add a marker in an audio stream, a bright flash can do this
in a video stream. The latency can be found by calculating
the difference between marker positions. The usability of this
method is limited because of its poor scalability. The synchro-
nization of a large number of streams can be very challenging.
Dropped samples and drift can only be detected when the mark-
ers are repeated each time interval, which is impractical. Actual
synchronization using this technique is only possible as a post-
processing operation.

In [2] a method is described which uses a clock signal to syn-
chronize streams in real-time. However this method avoids the
post-processing step it does not fit the requirements: each device
(sensor, video camera) should accept a clock-signal as input.
Because these devices (especially cameras) are very expensive
this method is not feasible for the stated problem.

In [3] the stated problem is approached in an entirely differ-
ent way. The described method does not try to synchronize the

streams directly. Instead, the (recorded) environment sound is
embedded in each stream. This ploy reduces the initial problem
to audio-to-audio alignment. Because the recorded environment
sound is almost the same for each stream, the problem is much
easier to tackle. The audio-to-audio algorithms described in the
article perform very well. The latency can be detected with a
precision less than 1ms. However the article only describes a
post-processing approach, the used algorithms look very inter-
esting.

The next part of this paper will describe a method to syn-
chronize streams in real-time using the algorithms mentioned
in the previous article. The word “real-time” can be ambigu-
ous in a signal-processing context. Therefore it’s important to
specify some requirements for a real-time system. Because the
latency-detecting algorithms need some amount of audio in or-
der to determine the latency it’s impossible to immediately out-
put the synchronized signals. In this paper the real-time re-
striction refers to the fact that the synchronization algorithms
are executed while the sensors are collecting data. The post-
processing step should be avoided.

II. DETERMINING LATENCY

The method described in [3] uses two latency detecting algo-
rithms which are complementary. By combining them, latency
can be detected accurately.

A. Acoustic fingerprinting

Acoustic fingerprinting is a fast and robust technique for com-
paring audio fragments. A method using acoustic fingerprint-
ing is described in [4]. The method uses fingerprints based on
spectral peaks. Each fingerprint contains condensed information
based on typical audio properties. This technique allows find-
ing similar audio fragments ignoring noise and other disturbing
background sounds.

However the initial application was identifying an audio
recording using a huge database containing a myriad of finger-
prints, it’s also possible to compare the fingerprints of record-
ings mutually. The latency can be detected by calculating the
offset between the fingerprints. The precision varies around
16ms to 32ms depending on the used parameters.

B. Cross-covariance

The cross-covariance (also referred to as cross-correlation) is
a calculation which measures the degree of similarity between
two time sequences. Because an audio signal is a time sequence,
this calculation can be used for determining the latency. When
the cross-covariance value is calculated for each possible shift

between two audio fragments, the shift with the highest result
determines the latency.

This method can determine the latency to the nearest sam-
ple. The precision in milliseconds depends on the sample rate:
when the sample rate is 8000H z the maximum precision is
1/8000H z = 0.125ms.

A disadvantage of this method is its performance. The time
complexity of the algorithm is O(n?) where n is the number of
samples in each signal. Finding the latency between two audio
fragments of 10s at a sample rate of 8000 H z would asymptoti-
cally result in 6.4 - 10° computations, which is impracticable on
a regular computer.

C. Refining the results

The two previously described algorithms are very comple-
mentary. Acoustic fingerprinting allows finding the latency very
fast and robustly. The cross-covariance algorithm can detect the
latency between two tiny pieces of audio very accurately. These
advantages can be easily combined.

By determining the raw latency with acoustic fingerprinting,
the number of samples used in the cross-covariance calcula-
tion can be limited. By cutting the raw latency from the corre-
sponding audio fragment, the new latency is reduced. When the
acoustic fingerprinting algorithm uses a precision of 32ms, the
cross covariance should be calculated on two audio fragments
of at least 256 samples (when the sample rate is S000H z). This
asymptotically results in 65 536 computations, which is much
more feasible than without the acoustic fingerprinting step.

D. Optimizations

Many optimization are applied to the latency-detecting algo-
rithms. The most important one is the repeated execution of the
cross-covariance algorithm. The cross-covariance algorithm is
very sensitive to noise and other undesirable sounds. Since the
algorithm calculates similarity of waveforms, these sounds can
be harmful to the final result.

Because the cross-covariance algorithm is executed on a very
tiny piece of audio it can be executed multiple times on a slightly
different location. The most frequent latency is the final result of
the algorithm. However the results are much more accurate after
this optimization, the influence on the performance is limited.
This because the time complexity function remains the same.

III. BUFFERING STREAMS

In order to avoid the post-processing step the real-time
streams have to be buffered. The algorithms are executed on the
consecutive buffers of each stream. The buffer size (¢) will be
expressed in seconds of audio it can contain. It determines the
maximum latency which can be detected. A minimum length of
10s is desirable to make the algorithms perform well. In order
to detect latency changes as fast as possible, a step size (s) has to
be chosen (also expressed in seconds). The step size determines
the interval between the moments a new buffer for each stream
is created. When the step size is smaller than the buffer size, the
overlap between two consecutive buffers is equal to ¢t — s.

Both the buffer size and step size influence the time between
a latency change and its detection. Since the latency can only be
detected when more than half of the buffer contains the modified

el e, by
b e

bufferz + 1
buffer ¢

bufferi — 1

| | | | |
180 185 190 195 200

Time (seconds)

\ |
170 175

Fig. 1. Visualization of a buffer containing 10s of audio with a step size of 5s.

latency, the best case detection speed is equal to t/2. By apply-
ing a smaller step size the worst case scenario can be improved:
it is equal to t/2 + s. Figure 1 shows a buffer where ¢t = 10 and
§=09.

IV. LATENCY FILTERS

The avoidance of the post-processing step makes it harder to
manually fix potential errors. When using audio recordings of
poor quality, it’s recommended to use a moving median latency
filter. By using this filter the consecutive latencies are pushed
in a queue. Each time a new latency is determined, the median
of the values in the queue is returned. Depending on the queue
size, some peaks in the consecutive latencies are flattened.

180
160 -
140 -
120 -
100 |-

80 |-

! !
600 5

Latency (ms)

| | |
10 15 20 25 30 35
Slice (nr)

Fig. 2. The sequence of latencies without filtering.

Figure 2 shows a sequence of latencies without filtering, fig-
ure 3 shows the same sequence after filtering with a moving-
median

V. SYNCHRONIZATION

The actual synchronization is performed by adding silence to
each stream. The latencies of each stream are converted to the
amount of silence which has to be added to each stream. It’s a
good practice to synchronize the streams by adding whitespace.
However this can also be done by dropping samples, the extra
loss of data is undesirable.

180 T T T T T T T T
160 -
140
120 - B
100 - *

Latency (ms)

6 O | |

! ! ! ! ! !
0 5 10 15 20 25 30 35

Slice (nr)

Fig. 3. The sequence of latencies after filtering.

VI. RESULTS

This research resulted in two Max/MSP modules!. One mod-
ule is able to read sensor datastreams accompanied by an au-
diostream from a Teensy microcontroller into the Max/MSP en-
vironment. The second module is designed to perform the actual
synchronization.

A. Using a Teensy

A Teensy is a microcontroller which can be used to attach sev-
eral sensors to a microphone with a negligible latency between
the streams. This property is very useful for the stated problem.
Because the actual synchronization is performed in Max/MSP
it’s required to read the analog Teensy pins into Max/MSP which
isn’t natively supported. To support this, a new module had to
be written: the TeensyReader. The module requires several pa-

Fig. 4. A Teensy microcontroller.

rameters: port name, sample rate of the Teensy, index of the first
analog pin (A3 — 3), index of the audio pin (starting at O for the
first analog pin) and the number of analog pins to read.

Figure 4 shows a picture of a Teensy connected to a micro-
phone and an infrared sensor.

Figure 5 shows the TeensyReader module reading signals
from the infrared sensor and microphone. The signals are dis-
played on two scopes.

I Max/MSP is software and a visual programming language which allows pro-
cessing audio and video signals. This can be done by connecting existing mod-
ules each having a specific task. Max/MSP allows writing own modules in Java
or C++.

mxj~ be signalsync.msp TeensyReader CC

il

Fig. 5. The TeensyReader module in Max/MSP.

B. The Sync module

The Sync module performs the actual synchronization. It
uses the software library which is responsible for buffering the
streams and calculating the latency. The module uses the la-
tency to add silence to each stream and output the synchronized
streams.

The module requires one parameter which is a character rep-
resentation of the stream structure. The parameter is a comma
separated string where each part consists of one ’a’ charac-
ter and any number of *d’ characters. An audio stream which
should be used for synchronization (using the audio-to-audio
alignment algorithms) is represented by ’a’, an attached data
stream by ’d’. The character order determines the order of in-
lets and outlets of the module.

Figure 6 shows the Sync module created with parameter
dad, addd. The synchronized outlets are sent to the sfrecord
module which writes the synchronized streams to a file.

=
1]

oy
&y
=

Fig. 6. The Sync module in Max/MSP. The data patch cable is labeled with d,
an audio patch cable with a.

VII. CONCLUSION

Several tests proved that the synchronization works very well
without the post-processing step. Even audio recorded from
poor quality can be synchronized easily avoiding the post-
processing step.

REFERENCES

[1] David Bannach, Oliver Amft, and Paul Lukowicz, “Automatic event-based
synchronization of multimodal data streams from wearable and ambient
sensors,” in Smart sensing and context, pp. 135-148. Springer, 2009.

[2]

(3]

[4]

(5]

Javier Jaimovich and Benjamin Knapp, “Synchronization of multimodal
recordings for musical performance research.,” in NIME, 2010, pp. 372—
374.

Joren Six and Marc Leman, “Synchronizing Multimodal Recordings Using
Audio-To-Audio Alignment,” Journal of Multimodal User Interfaces, vol.
9, no. 3, pp. 223-229, 2015.

Avery Li-Chun Wang, “An industrial-strength audio search algorithm,” in
ISMIR 2003, 4th Symposium Conference on Music Information Retrieval,
2003, pp. 7-13.

Joren Six, Olmo Cornelis, and Marc Leman, “TarsosDSP, a Real-Time
Audio Processing Framework in Java,” in Proceedings of the 53rd AES
Conference (AES 53rd). 2014, The Audio Engineering Society.

