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ABSTRACT 
Little is known about the abilities of people with dementia to 
synchronize bodily movements to music. The lack of non-intrusive 
tools that do not hinder patients, and the absence of appropriate 
analysis methods may explain why such investigations remain 
challenging. This paper discusses the development of an analysis 
framework for processing sensorimotor synchronization data 
obtained from multiple measuring devices. The data was collected 
during an explorative study, carried out at the University Hospital of 
Reims (F), involving 16 individuals with dementia. The study aimed 
at testing new methods and measurement tools developed to 
investigate sensorimotor synchronization capacities in people with 
dementia. An analysis framework was established for the extraction 
of quantity of motion and synchronization parameters from the 
multimodal dataset composed of sensor, audio, and video data. A 
user-friendly monitoring tool and analysis framework has been 
established and tested that holds potential to respond to the needs of 
complex movement data handling. The study enabled improving of 
the hardware and software robustness. It provides a strong 
framework for future experiments involving people with dementia 
interacting with music. 

I. INTRODUCTION 
A. Background 

In the last decade, serious efforts have been made to 
determine the relationship between music and health and 
wellbeing. Lesaffre (2013) gives an overview of the 
challenges that arise from using new technologies and 
developing new methods when working in a domain that is 
unfamiliar. Especially interesting are the new possibilities that 
evolve from working with the embodied music interaction 
paradigm. This is particularly the case for specific target 
populations such as people with dementia. It has been argued 
that the use of reliable monitoring technology in a proper 
music interaction context may be beneficial for people with 
dementia (Lesaffre, 2017). Indeed, music is known to be 
useful in contexts where people have difficulties with verbal 
and emotional communication. Music stimulates the brain’s 
reward centres while bodily movement activates its sensory 
and motor circuits. Strong links between music and motor 
functions suggest, for example, that sensorimotor 
synchronization to music could be an interesting aid for motor 
learning (Moussard, Bigand, Belleville, & Peretz, 2014). 
However, in view of the development of musical interventions 
in dementia, the rigorous methodological standards required 
are not always met (Samson, Clément, & Narme, 2015). This 
can partly be explained by the lack of custom tools that can 
support evidence-based research. Therefore, there is a need to 
develop monitoring and analysis tools that enable validating 

the efficacy of involving music interaction for the benefit of 
people with dementia.  

B. Sensorimotor Synchronization to Music 
Humans are known to have an advanced ability to 

synchronize movements (e.g. steps, hand and finger taps) to 
an external rhythm. In Repp and Su (2013) sensorimotor 
synchronisation (SMS) is defined as the coordination of 
rhythmic movement with an external rhythm. Repp and Su 
surveyed research in the field, comprising conventional 
tapping studies, dance, ensemble performance, and the 
neuroscience of SMS.  The ability to synchronise is 
considered as cognitively demanding (Bläsing, Calvo-Merino, 
& Cross, 2012; Dhami, Moreno, & DeSouza, 2014), and 
temporal regularities in music can entrain cognitive attentional 
resources (Jones & Boltz, 1989; Large & Jones, 1999). SMS 
is also considered to have a positive social and emotional 
significance (e.g. Wiltermuth & Heath, 2009). 

Moreover, musical synchronization has proven effective in 
the rehabilitation of physical and social-emotional clinical 
disorders such as Parkinson’s disease (e.g. Nombela, Hughes, 
& Owen, 2013). Fundamental studies on SMS found 
indications that physical strength and spatial references are 
important contributing factors (see Leman, Moelants & 
Varewyck, 2013). However, due to the lack of appropriate 
tools for non-intrusive and objective measurement, there is 
hardly any evidence-based understanding of motoric, 
expressive and empathic responding to music of people with 
dementia. 

C. Tools 
In general, the measurement and analysis of human 

movements in a musical context is inherently multi-
disciplinary and is a real challenge in science today. Such 
multi-disciplinary research requires a methodology that 
combines both a bottom-up and a top-down approach. The 
bottom-up approach is concerned with the observation of 
body movement, which is based on sensing technologies. The 
top-down approach is concerned with the identification of 
music related and non-music related actions, based on the 
observer’s interpretation in combination with survey data 
related to the participants.  

Measuring movement in people with dementia is even less 
straightforward, because attaching sensors or other meas- 
urement devices to their bodies might elicit stress and fear. 
Furthermore, capturing information about body movement 
requires a data acquisition system that (a) can measure, 
sample, and digitize physical properties; (b) can send that 
information to a computer for further processing; and above 
all, (c) is not invasive and usable in an ecological setting.  

To meet these requirements a force plate system was 
developed aiming at providing a balance between func-
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tionality for the patient, sensitivity for measuring smaller 
movements, and data reliability. The system consists of a 
square wooden force plate (90 x 90 cm), mounted on a frame 
containing four weight sensors, one in each corner. The four 
calibrated sensors provide weight values and are read out 
individually by Arduino Due, an open- source prototyping 
platform, which can be used to calculate movement direction 
and quantity of movement. A software program was 
developed that can read multiple force plates simultaneously. 
The system was tested for the first time in a study that 
investigates spontaneous movement response to music in 
people with dementia. A detailed description is provided in 
Lesaffre, Moens, and Desmet (2017).  

It must be noted that to date there is hardly any research 
that investigates sensorimotor synchronization to music in 
people with dementia. Experimental research on syn-
chronization abilities typically collects information from 
different types of instruments, measurement techniques, and 
experimental setups. The increasing availability of several 
acquisition tools generates complex datasets, which are not 
easy to handle and therefore require new analysis frameworks.  

This paper describes the analysis framework developed for 
processing sensorimotor synchronization data obtained from 
multiple measuring devices, such as a pressure sensor data, 
audio and video recording. The data was collected during an 
explorative study, carried out at the University Hospital of 
Reims (F), involving individuals with dementia.   

II. EXPERIMENT 
A. Participants 

16 participants (13 female and 3 male; range 79 - 94 years; 
mean MMSE = 14,21) were recruited for this study. The study 
was carried out in accordance with the approved guidelines of 
the University Hospital of Reims. Each subject provided 
informed consent prior to participation.  

B. Experiment Design 
Synchronisation was tested in the following conditions: (1) 

in the presence of a musical beat vs. a familiar song of the 
same tempo, (2) under auditory, visual and audio-visual 
conditions, and (3) in live vs. recording conditions (see Table 
1). The 9 conditions were presented in randomised order. 
Throughout the experiment patients were encouraged to tap 
along with the music or performer. 

Table 1.  Conditions used in the experiment. 

Auditory & Visual Auditory Visual 
Tapping & Pulse 
(video) Pulse (audio only) Tapping (video) 

Tapping & Pulse (live) -- Tapping (live) 

Song (video & audio) Song 
(instrumental) -- 

Song (live & audio) 
Song (audio 
recording of live 
performance) 

-- 

 
Patients were encouraged to tap along with the music or 

performer. Each session took about one hour, including 
picking up and taking back the patient to his or her room. 

The participants were exposed to a cheerful familiar song 
(Ah! Le petit vin blanc), a musette waltz with a tempo of 84 
bpm. This tempo is in agreement with the spontaneous motor 
tempo of normal persons of the similar age, as described by 
McAuley, Jones and Holub (2006). 

The experimental setup consisted of two force plates 
developed at Ghent University (IPEM), each with a chair 
mounted on it, one for the patient and one for the performer 
(see Figure 1). The two boards were placed in front of each 
other. The force plates have each four sensors (one in each 
corner) to measure the movement of the person sitting in the 
chair. A small table is mounted on each chair providing a 
comfortable position for tapping along with the music. Below 
this table was a microphone so that the tapping of a participant 
was measured as an audio signal. Two webcams were placed 
so that from both force plates a video was recorded during the 
experiment. Furthermore, a projection screen with a projector 
behind it was placed at the backside of the performer’s board 
in order to enable pre-recorded video projections needed for 
the video conditions of the experiment. 

 

Figure 1. Example of the analysis framework in ELAN, 
representing video of performer (top left) and subject (top right); 
normalized intensity of quantity of movement time series of 
subject (red) and performer (blue); and audio recording of the 
tapping. 

III. ANALYSIS FRAMEWORK 
The aim of the analysis framework was to develop a 

method for the analysis of the tapping time series in different 
conditions; to evaluate the hardware and software robustness, 
and experimental setup; and to formulate recommendations 
for future experiments. 

A. Data Considerations 
Using a hardware setup based on the two force plates 

developed at IPEM (see supra), in combination with webcam 
video capture and audio recording of tapping, audio time 
series in different conditions were measured. After a data 
control and repeated viewing of the video and audio data four 
participants had to be excluded from the analysis due to 
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incomplete data, for example by lack of response and missing 
conditions.  

Data were recorded at 8000 Hz. The obtained data 
structure consisted of two csv files containing the force plate 
sensor data and the audio of the tapping, two audio signals 
(wav) of the tapping, and two mp4 video files from the 
webcam.  

The SyncSink application (Six & Leman, 2015) was used 
to synchronize the data. After synchronization an initial 
ELAN (Wittenburg, Brugman, Russel, et al., 2006) structure 
for each participant/condition combination was setup in order 
to enable data inspection and determination of the start and 
stop time for analysis. Every ELAN structure contains the 
video of the performer (with audio), the video of the 
participant (without audio) and the audio recordings of the 
tapping (see Figure 1). 

Finally, the csv files were imported in Matlab (Mathworks, 
2014) using a toolbox developed at IPEM. In each 
participant/condition data structure a Matlab folder was added 
containing all results from Matlab calculations. By doing so 
data integrity was assured. 

B. Analysis Method 
The aim of the analysis was to determine the amount of 

movement, the regularity of the tapping, and the syn-
chronization of the tapping with the external tapping source of 
the condition.  

To begin with, the sensor data were trimmed to new start 
and stop time positions obtained by inspecting the ELAN 
structures. Trimming was necessary due to additional un-
wanted noise at the beginning and the end of the experiment, 
and to select the parts of the time series where actual tapping 
occurred. 

1) Calculation of Quantity of Motion (QoM). The four 
sensor outputs of the force plate were used to determine QoM. 
The method used was as follows: First, Cartesian coordinates 
(1), (2) were calculated so that the centre of the balance board 
equals [0,0] and the positions of the sensors are at [-0.5,0.5], 
[0.5,0.5], [0.5,-0.5] and [-0.5,-0.5] (see Figure 2). 
 

Figure 2. (a) Force plate layout and definition of coordinates, (b) 
polar plot example 

𝑥! =
𝑆1! + 𝑆4!

𝑆!"!
!!!

+ 0.5 =
𝑆2! + 𝑆3!

𝑆!"!
!!!

− 0.5 
(1) 

𝑦! =
𝑆1! + 𝑆2!

𝑆!"!
!!!

+ 0.5 =
𝑆3! + 𝑆4!

𝑆!"!
!!!

− 0.5 
(2) 

(Where s is the sensor and i is the result at point i in the time series.) 
The resulting Cartesian coordinates are then transformed 

to polar coordinates (3), (4): 

𝜌 = 𝑥!! + 𝑦!! 
(3) 

𝜃 = 𝑎𝑡𝑎𝑛2 𝑥! , 𝑦!  (4) 
Second, the polar coordinates are translated so that the 

point of gravity is [0,0]. The latter is done to enable 
comparisons between subjects by making the recorded 
movement independent from the point of gravity of the 
participants.  

Finally, the total QoM (5) is calculated as follows: 

𝑄𝑜𝑀 =
𝜌!!

!!!

𝑇
 

(5) 

(Where T is the duration of the time series)  
The division by T makes the results independent of the 

duration of the time series, so that the values of QoM can be 
compared between subjects/conditions. 

2) Peak detection of taps. The tapping was recorded by 
means of a microphone mounted under the table. The 
microphone recorded not only the taps but also any other 
sound (e.g. talking, music, metronome and surrounding noise) 
that was present during the experiment.  

Therefore, it was challenging to detect peaks in the 
complex mixed signals. Furthermore the sampling frequency 
was high (8000 Hz), so that the original signal was blurred 
with shoulders, spikes etc. Figure 3 shows an example of a 
typical signal in this dataset with indication of the parameters 
used in the peak detection algorithm (O'Haver, 1997). 

 

 
 
Figure 3. Example of peaks in the obtained signals. Detection is 
based on amplitude, slope onset, width at half high, and peak 
type. 
 

Before the peak detection algorithm could be applied it 
was necessary to clean up the complex signals. First, the noise 
had to be removed. Tapping peaks occurred as wavelets in the 
signal so that wavelet decomposition based on the Hilbert 
transform was used to filter the data (Hahn, 1996). Second the 
data were filtered and smoothed using a Savitzky-Golay filter 
(Savitzky & Golay, 1964). An example of this process is 
shown in Figure 4. 
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Figure 4. Example of wavelet decomposition and Savitzky-Golay 
filtering. The grey signal is the original series, the black signal is 
the resulting filtered and smoothed series. 

Peak detection was based on the Matlab PeakFinder 
toolbox (O’Haver, 2009). Here peak detection depends on 
amplitude, slope onset, width at half high, and peak type (eg. 
Gaussian). An initial set of these threshold parameters was 
used as seed. The 4 parameters were then manually adapted to 
obtain correct peak detection. 

3) Inter Tap Interval (ITI) variability. The first variable 
calculated from the detected peak intervals is the variability of 
the intra-subject tapping sequences (6).  

The standard deviation of inter-response intervals (7) for a 
trial was calculated by measuring the mean inter-response 
interval and by then expressing the variability of intervals 
around that mean in terms of the standard deviation (SDITI). 

 

𝐼𝑇𝐼 =
⌊𝑡!!! − 𝑡!⌋
𝑁 − 1

!!!

!!!

 
 
(6) 
 
 

𝑆𝐷!"! =
1
𝑁

𝑡! − 𝐼𝑇𝐼 !
!!!

!!!

 

 
(7) 

 
 

SDITI provides information on how regular a participant 
tapped. Histogram analysis was used to detect outliers.  

The presence of outliers due to high ITI values is the result 
of a participant who interrupted tapping during the task. 

4) Sensorimotor Synchronization (SMS). In this 
experiment the external rhythm sources depended on the 
conditions. This means that for each condition the modelling 
had to be adapted (Elliott, Chua, & Wing, 2016). The event 
asynchronies are used to calculate the synchronization (8).   

Figure 5 shows the different intervals used to calculate the 
synchronization. 
 

𝑆𝐷!"# =
1
𝑁

𝐴! − 𝐴
!!!

!!!

 

 
(8) 

 
 

 
Figure 5. Example of tapping time series and definition of 
intervals. IOI is the inter onset interval of the external rhythm 
source, ITIn is the nth Inter Tap Interval and An is the nth event 
asynchrony. 

IV. RESULTS 
QoM was calculated for all selected participants (N = 12) 

and for all conditions. The results show that most tapping was 
performed in the condition with live singing performance. The 
least tapping occurred in the pulse conditions without live 
performance. 

In order to evaluate the hardware, software and the 
analytical method 4 participants in 3 conditions were selected 
for a full analysis. The conditions were live tapping of the 
performer to a pulse (condition 2), pre-recorded video of the 
performer hand tapping and singing (condition 3), live 
performance involving hand tapping and singing (condition 
4). Table 2 summarizes the results of the analysis. 

 

Table 2. Summary of results. 
ID Condition QoM (mV) ITI SDasy (mV) 
22 2 20.10 1.35 234 
22 3 16.64 1.21 498 
22 4 31.74 0.98 369 
23 2 24.74 0.92 269 
23 3 32.95 1.42 375 
23 4 45.02 1.12 296 
24 2 5.62 1.23 245 
24 3 5.15 1.14 258 
24 4 4.57 1.13 269 
32 2 19.35 1.21 452 
32 3 27.77 1.09 398 
32 4 39.40 1.05 475 

 

V. DISCUSSION AND CONCLUSION 
The aim of this exploratory study was testing new 

monitoring tools and developing an analysis framework for 
multimodal synchronization data.  

1) Experimental design. Due to several issues related to 
the experimental design, such as involving patients with 
varying types of dementia and degrees of cognitive 
impairment (MMSE range 3-23), a complete analysis of all 
participant/condition combinations could not be done. Some 
participants did not move at all, or tapped only during short 
times. It was observed the ability to bodily respond is related 
to the degree of cognitive impairment, suggesting that in 
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future experiments on synchronization, patients with severe 
cognitive impairment should not be included. 

2) Hardware and software. In general the newly 
developed hardware was stable during the whole experiment. 
Only in 2 cases there was a drift of a sensor, and in 1 case a 
sensor failed. The main drawback of the hardware is the 
recording of the taps by means of microphones. The 
microphones register a lot of noise from different sources 
during the experiment. This results in time series, which are 
difficult to synchronize and to analyse. A further refinement is 
to calibrate the sensor output in order to obtain meaningful 
values for QoM instead of millivolt (mV). 

Meanwhile, an adapted system has been developed for 
follow-up experiments. The tapping is now registered using a 
sensor mounted in the table, and additional sensors are added 
in a footplate on top of the force plate to register the leg and 
feet movements. Furthermore a new device is added to the 
system generating 4 beeps at the start of the experiment. The 
beeps are simultaneous recorded by the webcams and by the 
interface, which records the sensor data. This adaptation 
makes it possible to generate synchronized files automatically. 

The software performed well. However, a workaround had 
to be established because there was no direct connection with 
a server available at the location of the experiment so that the 
data were not accessible at other (distant) locations. An ftp 
server was used that caused very long download times.  

The original mp4 video files from the webcams were not 
compatible with ELAN software. Conversion to an mp4 
format suitable for ELAN was possible using ffmpeg but in 
the resulting mp4 files the audio was out of sync. A solution 
was found by conversing mp4 to mov (using ffmpeg).  

The SyncSink application worked mostly fine. Some 
difficulties to synchronize occurred when the tapping was 
very weak and a lot of audio noise was present in the data. 

3) Methodology. Up till now, the analysis framework 
enables to calculate QoM, ITI and SDasy. The bottleneck in 
this exploratory study was the peak detection. Indeed, 
detecting peaks in complex mixed signals is not 
straightforward. In some cases the peak detection failed due to 
very soft tapping in combination with a lot of background 
noise. In other cases the audio from the tapping could not be 
synchronized with the audio from the videos. Moreover, 
selecting the appropriate thresholds for wavelet 
decomposition and Savitzky-Golay filtering is still a trial and 
error procedure. 

Adding two new variables could enhance the 
methodology. First, the number of actual taps of a participant 
compared to the maximum number of taps in the reference 
source could be added. The percentage of actual taps 
compared to the maximum number of taps is then a measure 
of tapping activity. Second, following Stergiou and Decker, 
nonlinear dynamics (chaotic structures) could be added to the 
analysis (2011). Apart from this, Approximate Entropy 
(ApEn) and/or Sampling Entropy (SampEn) of the tapping 
time series could be an added value to the classical variance 
analysis.  

Taking into account these findings, a follow-up 
experiment has been designed that focuses on synchronization 
abilities in people with dementia (see Ghilain, Schiatura, 
Lesaffre, Desmet et al., 2017). 
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