Audio Processing Joren Six

25 March 2011

Goal

Cover the basic principles of doing stuff with audio.

Outline

Outline and Goal

Basics

Analog Audio Digital Audio

TarsosDSP

Examples Contact

Conclusion

Basics - Analog Audio

Figure: Continuous wave

Basics - Digital Audio

Figure: Sampled wave

Basics - Digital Audio - Samplerate

Listing 1: A sampled sine wave buffer

```
double sampleRate = 44100.0;
double frequency = 440.0;
double seconds = 2.0;
float[] b = new float[seconds * sampleRate];
for (int sample = 0; sample < b.length; sample++) {
    double time = sample / sampleRate;
    b[sample] = 0.8 * Math.sin(twoPiF0 * time);
}</pre>
```

Basics- Digital Audio - Bit depth

Listing 2: A sampled sine wave buffer

```
final byte[] byteBuffer = new byte[b.length * 2];
int bIndex = 0;
for (int i = 0; i < byteBuffer.length; i++) {
    final int x = (int) (b[bIndex++] * 32767.0);
    byteBuffer[i] = (byte) x;
    i++;
//unsigned right shift
    byteBuffer[i] = (byte) (x >>> 8);
}
```

float in [-1.0, 1.0] to 16bit signed little endian PCM. Multiply each sample with $\lfloor (2^{16}-1)/2 \rfloor = 32767$

TarsosDSP - What

TarsosDSP is a collection of JAVA classes to do simple audio processing. Bascially chainable operations on float or byte buffers.

TarsosDSP - Contents

- ► Filters: low pass, high pass
- Pitch detectors: YIN and MPM
- ▶ FFT
- WAV file writer

TarsosDSP - Sound Detection

Demo

Outline and Goal Basics TarsosDSP Conclusion

Examples Contact

TarsosDSP - Pitch Detection

Figure: Pitch detection

TarsosDSP - Percussion Detection

Figure: Percussion onset detection

TarsosDSP - FFT to MIDI

Demo

TarsosDSP - Contact

Figure: https://github.com/JorenSix/TarsosDSP

Conclusion and Questions

joren.six@hogent.be

