Audio Processing Joren Six

25 March 2011
Goal

Cover the basic principles of doing stuff with audio.
Outline

Outline and Goal

Basics

Analog Audio
Digital Audio

TarsosDSP

Examples
Contact

Conclusion
Basics - Analog Audio

Figure: Continuous wave
Basics - Digital Audio

\[f(x) \]

Figure: Sampled wave
Listing 1: A sampled sine wave buffer

```java
double sampleRate = 44100.0;
double frequency = 440.0;
double seconds = 2.0;
float[] b = new float[seconds * sampleRate];
for (int sample = 0; sample < b.length; sample++) {
    double time = sample / sampleRate;
    b[sample] = 0.8 * Math.sin(twoPiF0 * time);
}
```
Basics - Digital Audio - Bit depth

```java
final byte[] byteBuffer = new byte[b.length * 2];
int bIndex = 0;
for (int i = 0; i < byteBuffer.length; i++) {
    final int x = (int) (b[bIndex++] * 32767.0);
    byteBuffer[i] = (byte) x;
    i++;
}

// unsigned right shift
byteBuffer[i] = (byte) (x >>> 8);
```

float in $[-1.0, 1.0]$ to 16bit signed little endian PCM.
Multiply each sample with $\lfloor (2^{16} - 1)/2 \rfloor = 32767$
TarsosDSP - What

TarsosDSP is a collection of JAVA classes to do simple audio processing. Basically chainable operations on float or byte buffers.
TarsosDSP - Contents

- Filters: low pass, high pass
- Pitch detectors: YIN and MPM
- FFT
- WAV file writer
- ...
Demo
TarsosDSP - Pitch Detection

Figure: Pitch detection
TarsosDSP - Percussion Detection

Figure: Percussion onset detection
TarsosDSP - FFT to MIDI

Demo
TarsosDSP - Contact

Figure: https://github.com/JorenSix/TarsosDSP
Conclusion and Questions

joren.six@hogent.be