
TarsosDSP, a Real-Time Audio Processing
Framework in Java
Joren Six1,2, Olmo Cornelis2, Marc Leman1

1University Ghent, IPEM, Sint-Pietersnieuwstraat 41, 9000, Gent, Belgium

2University College Ghent, School of Arts, Jozef Kluyskensstraat 2, 9000 Gent, Belgium

Correspondence should be addressed to Joren Six (joren.six@ugent.be)

ABSTRACT
This paper presents TarsosDSP, a framework for real-time audio analysis and processing. Most libraries and
frameworks offer either audio analysis and feature extraction or audio synthesis and processing. TarsosDSP
is one of a only a few frameworks that offers both analysis, processing and feature extraction in real-time, a
unique feature in the Java ecosystem. The framework contains practical audio processing algorithms, it can
be extended easily, and has no external dependencies. Each algorithm is implemented as simple as possible
thanks to a straightforward processing pipeline. TarsosDSP’s features include a resampling algorithm, onset
detectors, a number of pitch estimation algorithms, a time stretch algorithm, a pitch shifting algorithm, and
an algorithm to calculate the Constant-Q. The framework also allows simple audio synthesis, some audio
effects, and several filters. The Open Source framework is a valuable contribution to the MIR-Community
and ideal fit for interactive MIR-applications on Android.

1. INTRODUCTION
Frameworks or libraries1 for audio processing can be di-
vided into two categories.The first category offers audio
analysis and feature extraction. The second category of-
fers audio synthesis capabilities. Both types may or may
not operate in real-time. Table 1 shows a partial overview
of notable audio frameworks. It shows that only a few
frameworks offer real-time feature extraction combined
with synthesis capabilities. To the best of the authors’
knowledge, TarsosDSP is unique in that regard within
the Java ecosystem. The combination of real-time fea-
ture extraction and synthesis can be of use for music ed-
ucation tools or music video games. Especially for de-
velopment on the Android platform there is a need for
such functionality.

TarsosDSP also fills a need for educational tools for
Music Information Retrieval. As identified by Gomez
in [14], there is a need for comprehensible, well-
documented MIR-frameworks which perform useful
tasks on every platforms, without the requirement of a
costly software package like Matlab. TarsosDSP serves

1The distinction between library and framework is explained in [2].
In short, a framework is an abstract specification of an application
whereby analysis and design is reused, conversely when using a (class)
library code is reused but a library does not enforce a design.

this educational goal, it has already been used by several
master students as a starting point into music information
retrieval[5, 32, 28].

The framework tries to hit the sweet spot between be-
ing capable enough to get real tasks done, and compact
enough to serve as a demonstration for beginning MIR-
researchers on how audio processing works in practice.
TarsosDSP therefore targets both students and more ex-
perienced researchers who want to make use of the im-
plemented features.

After this introduction a section about the design deci-
sions made follows, then the main features of TarsosDSP
are highlighted. Chapter four is about the availability of
the framework. The paper ends with a conclusion and
future work.

2. DESIGN DECISIONS

To meet the goals stated in the introduction a couple of
design decisions were made.

2.1. Java based
TarsosDSP was written in Java to allow portability from
one platform to another. The automatic memory manage-
ment facilities are a great boon for a system implemented
in Java. These features allow a clean implementation

AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29
1



Six TarsosDSP, a Real-Time Audio Processing Framework in Java

Name Analysis Synthesis Real-Time Technology
Aubio [7] True False True C

CLAM [3] True True True C
CSL [23] True True True C++

Essentia [6] True False True C++
Marsyas [29] True True False C++
SndObj [16] True True True C++

Sonic Visualizer [11] True False False C++
STK [25] False True True C++

Tartini [19] True False True C++
YAAFE [17] True False False C++

Beads[21] False True True Java
JASS[30] False True True Java

jAudio [18] True False False Java
Jipes True False False Java

jMusic[8] False True False Java
JSyn [10] False True True Java

Minim[22] False True True Java
TarsosDSP True True True Java

Table 1: A table with notable audio frameworks. Only a few frameworks offer real-time feature extraction and audio
synthesis capabilities. According to the research by the authors, in the Java ecosystem only TarsosDSP offers this
capability.

of audio processing algorithms. The clutter introduced
by memory management instructions, and platform de-
pendent ifdef’s typically found in C++ implementa-
tions are avoided. The Dalvik Java runtime enables to
run TarsosDSP’s algorithms unmodified on the Android
platform. Java or C++ libraries are often hard to use
due to external dependencies. TarsosDSP has no exter-
nal dependencies, except for the standard Java Runtime.
Java does have a serious drawback, it struggles to offer
a low-latency audio pipeline. If real-time low-latency is
needed, the environment in which TarsosDSP operates
needs to be optimized, e.g. by following the instructions
found in [1].

2.2. Processing pipeline

The processing pipeline is kept as simple as possible.
Currently, only single channel audio is allowed, which
helps to makes the processing chain extremely straight-
forward2. A schematic representation can be found in
Figure 1. The source of the audio is a file, a microphone,

2Actually multichannel audio is accepted as well, but it is automat-
ically downmixed to one channel before it is send through the process-
ing pipeline

or an optionally empty stream. The AudioDispatcher

chops incoming audio in blocks of a requested num-
ber of samples, with a defined overlap. Subsequently
the blocks of audio are scaled to a float in the range
[-1,1]. The wrapped blocks are encapsulated in an
AudioEvent object which contains a pointer to the au-
dio, the start time in seconds, and has some auxiliary
methods, e.g. to calculate the energy of the audio block.
The AudioDispatcher sends the AudioEvent through
a series of AudioProcessor objects, which execute an
operation on audio. The core of the algorithms are con-
tained in these AudioProcessor objects. They can e.g.
estimate pitch or detect onsets in a block of audio. Note
that the size of a block of audio can change during the
processing flow. This is the case when a block of au-
dio is stretched in time. For more examples of available
AudioProcessor operations see section 3. Figure 2.2
shows a processing pipeline. It shows how the dispatcher
chops up audio and how the AudioProcessor objects
are linked. Also interesting to note is line 8, where an
anonymous inner class is declared to handle pitch esti-
mation results. The example covers filtering, analysis,
effects and playback. The last statement on line 23 boot-

AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29
Page 2 of 7



Six TarsosDSP, a Real-Time Audio Processing Framework in Java

Audio Dispatcher Event Processor

Output

Fig. 1: A schematic representation of the TarsosDSP processing pipeline. The incoming audio (left) is divided into
blocks which are encapsulated in Event objects by the Dispatcher. The event objects flow through one or more
Processor blocks, which may or may not alter the audio and can generate output (e.g. pitch estimations). Dotted lines
represent optional flows.

01: //Get an audio stream from the microphone, chop it in blocks of 1024 samples, no overlap (0 samples)
02: AudioDispatcher d = AudioDispatcher.fromDefaultMicrophone(1024, 0);
03: float sr = 44100;//The sample rate
04: //High pass filter, let everything pass above 110Hz
05: AudioProcessor highPass = new HighPass(110,sr);
06: d.addAudioProcessor(highPass);
07: //Pitch detection, print estimated pitches on standard out
08: PitchDetectionHandler printPitch = new PitchDetectionHandler() {
09: @Override
10: public void handlePitch(PitchDetectionResult pitchDetectionResult,AudioEvent audioEvent) {
11: System.out.println(pitchDetectionResult.getPitch());
12: }
13: };
14: PitchEstimationAlgorithm algo = PitchEstimationAlgorithm.YIN; //use YIN
15: AudioProcessor pitchEstimator = new PitchProcessor(algo, sr,1024,printPitch);
16: d.addAudioProcessor(pitchEstimator);
17: //Add an audio effect (delay)
18: d.addAudioProcessor(new DelayEffect(0.5,0.3,sr));
19: //Mix some noise with the audio (synthesis)
20: d.addAudioProcessor(new NoiseGenerator(0.3));
21: //Play the audio on the loudspeakers
22: d.addAudioProcessor(new AudioPlayer(new AudioFormat(sr, 16, 1, true,true)));
23: d.run();//starts the dispatching process

Fig. 2: A TarsosDSP processing PipeLine. Here, pitch estimation on filtered audio from a microphone sample session
is done in real-time. A delay audio effect is added and some noise is added to the audio before it is played back. The
example covers filtering, analysis, audio effects, synthesis and playback.

AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29
Page 3 of 7



Six TarsosDSP, a Real-Time Audio Processing Framework in Java

Fig. 3: A visualization of some of the features that can be extracted using TarsosDSP: a waveform (top panel, black),
onsets (top panel, blue), beats (top panel, red), a Constant-Q spectrogram (bottom panel, gray), and pitch estimations
(bottom panel, red). The source code for the visualisation is part of the TarsosDSP distribution as well.

straps the whole process.

2.3. Optimizations
TarsosDSP serves an educational goal, therefore the im-
plementations of the algorithms are kept as pure as pos-
sible, and no obfuscating optimizations are made. Read-
ability of the source code is put before its execution
speed, if algorithms are not quick enough users are in-
vited to optimize the Java code themselves, or look for
alternatives, perhaps in another programming language
like C++. This is a rather unique feature of the Tarsos-
DSP framework, other libraries take a different approach.
jAudio [18] and YAAFE[17] for example reuse calcula-
tions for feature extraction, this makes algorithms more
efficient, but also harder to grasp. Other libraries still,
like SoundTouch3, carry a burden by being highly op-
timized - with assembler code - and by having a large
history. These things tend to contribute to less readable
code, especially for people new in the field.

3. IMPLEMENTED FEATURES
In this chapter the main implemented features are high-

lighted. Next to the list below, there are boiler-plate fea-
tures e.g. to adjust gain, write a wav-file, detect silence,
following envelope, playback audio. Figure 3 shows a

3http://www.surina.net/soundtouch/ SoundTouch, by Olli Parvi-
ainen, is an open-source audio processing library.

visualization of several features computed with Tarsos-
DSP.

• TarsosDSP was originally conceived as a library for
pitch estimation, therefore it contains several pitch
estimators: YIN [12], MPM [20], AMDF[24]4, and
an estimator based on dynamic wavelets[15]. There
are two YIN implementations, one remains within
the comforts of the time domain, the other calcu-
lates convolution in the frequency domain5.

• Two onset detectors are provided. One described in
[4], and the one used by the BeatRoot system[13].

• The WSOLA time stretch algorithm[31], which al-
lows to alter the speed of an audio stream without
altering the pitch is included. On moderate time
stretch factors - 80%-120% of the original speed -
only limited audible artifacts are noticeable.

• A resampling algorithm based on [27] and the re-
lated open source resample software package6.

4Partial implementation provided by Eder Souza
5The YIN FFT implementation was kindly contributed by Matthias

Mauch
6Resample 1.8.1 can be found on the digital audio resampling home

page https://ccrma.stanford.edu/ jos/resample/, maintained by Julius O.
Smith

AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29
Page 4 of 7



Six TarsosDSP, a Real-Time Audio Processing Framework in Java

• A pitch shifting algorithm, which allows to change
the pitch of audio without affecting speed, is formed
by chaining the time-stretch algorithm with the re-
sample algorithm.

• As examples of audio effects, TarsosDSP contains
a delay and flanger effect. Both are implemented as
minimalistic as possible.

• Several IIR-filters are included. A single pass and
four stage low pass filter, a high pass filter, and a
band pass filter.

• TarsosDSP also allows audio synthesis and includes
generators for sine waves and noise. Also included
is a Low Frequency Oscillator (LFO) to control the
amplitude of the resulting audio.

• A spectrum can be calculated with the inevitable
FFT or using the provided implementation of the
Constant-Q[9] transform.

3.1. Example Applications

To show the capabilities of the framework, seventeen ex-
amples are built. Most examples are small programmes
with a simple user interface, showcasing one algorithm.
They don’t only show which functionality is present in
the framework, but also how to use those in other applica-
tions. There are example applications for time stretching,
pitch shifting, pitch estimation, onset detection,. . . Figure
4 shows an example application, featuring the pitch shift-
ing algorithm.

TarsosDSP is used by Tarsos[26] a software tool to an-
alyze and experiment with pitch organization in non-
western music. It is an end-user application with a graph-
ical user interface that leverages a lot of TarsosDSP’s fea-
tures. It can be seen as a showcase for the framework.

4. AVAILABILITY AND LICENSE
The source code is available under the GPL license terms
at GitHub: https://github.com/JorenSix/TarsosDSP.
Contributions are more than welcome. TarsosDSP
releases, the manual, and documentation can be found at
the release directory http://0110.be/releases/TarsosDSP/.
Nightly builds can be found there as well. Other down-
loads, documentation on the example applications and
background information is available on http://0110.be.
Providing the source code under the GPL license makes
sure that derivative works also need to provide the source
code, which enables reproducibility.

Fig. 4: A TarsosDSP example application. Most algo-
rithms implemented in TarsosDSP have a demo applica-
tion with a user interface. Here, the capabilities of a pitch
shifting algorithm are shown.

AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29
Page 5 of 7



Six TarsosDSP, a Real-Time Audio Processing Framework in Java

5. CONCLUSION
In this paper TarsosDSP was presented. An Open Source
Java library for real time audio processing without ex-
ternal dependencies. It allows real-time pitch and onset
extraction, a unique feature in the Java ecosystem. It also
contains algorithms for time stretching, pitch shifting,
filtering, resampling, effects, and synthesis. TarsosDSP
serves an educational goal, therefore algorithms are im-
plemented as simple and self-contained as possible using
a straightforward pipeline. The library can be used on the
Android platform, as a back-end for Java applications or
stand alone, by using one of the provided example ap-
plications. After two years of active development it has
become a valuable addition to the MIR-community.

6. REFERENCES

[1] Real-Time, Low Latency Audio Processing in Java.
In Proceedings of the International Computer Mu-
sic Conference (ICMC 2007), pages 99–102, 2007.

[2] X. Amatriain. An Object-Oriented Metamodel for
Digital Signal Processing with a focus on Audio
and Music. PhD thesis, 2005.

[3] X. Amatriain, P. Arumı́, and M. Ramı́rez. CLAM,
Yet Another Library for Audio and Music Process-
ing? In Proceedings of 17th Annual ACM Confer-
ence on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA 2002),
2002.

[4] Dan Barry, Derry Fitzgerald, Eugene Coyle, and
Bob Lawlor. Drum Source Separation using Per-
cussive Feature Detection and Spectral Modulation.
In Proceedings of the Irish Signals and Systems
Conference (ISSC 2005), 2005.

[5] Santiago David Davila Benavides. Racioco de
Agentes Musicais Composi Algorica, Vida artifi-
ciale Interatividade em Sistemas Multiagentes Mu-
sicais. Master’s thesis, Instituto de Matemca e
Estatica - Universidade de Saulo, 2012.

[6] D. Bogdanov, Nicolas Wack, Emilia Gómez,
Sankalp Gulati, P. Herrera, O. Mayor, G. Roma,
J. Salamon, J. Zapata, and Xavier Serra. ESSEN-
TIA: an Audio Analysis Library for Music Infor-
mation Retrieval. In Proceedings of the 14th In-
ternational Symposium on Music Information Re-
trieval (ISMIR 2013), pages 493–498, Curitiba,
Brazil, 04/11/2013 2013.

[7] Paul Brossier. Automatic Annotation of Musical
Audio for Interactive Applications. PhD thesis,
Queen Mary University of London, UK, August
2006.

[8] Andrew R. Brown and Andrew C. Sorensen. Intro-
ducing jMusic. In Andrew R. Brown and Richard
Wilding, editors, Australasian Computer Music
Conference, pages 68–76, Queensland University
of Technology, Brisbane, 2000. ACMA.

[9] Judith Brown and Miller S. Puckette. An efficient
algorithm for the calculation of a constant q trans-
form. Journal of the Acoustical Society of America,
92(5):2698–2701, November 1992.

[10] P. Burk. JSyn - A Real-time Synthesis API for Java.
In Proceedings of the 1998 International Computer
Music Conference (ICMC 1998). Computer Music
Associaciation, 1998.

[11] C Cannam, C Landone, M Sandler, and J.P Bello.
The Sonic Visualiser: A Visualisation Platform for
Semantic Descriptors from Musical Signals. In
Proceedings of the 7th International Symposium on
Music Information Retrieval (ISMIR 2006), Victo-
ria, Canada, 2006.

[12] Alain de Cheveigné and Kawahara Hideki. YIN, a
Fundamental Frequency Estimator for Speech and
Music. The Journal of the Acoustical Society of
America, 111(4):1917–1930, 2002.

[13] Simon Dixon. Automatic Extraction of Tempo and
Beat From Expressive Performances. Journal of
New Music Research (JNMR), 30(1):39–58, 2001.

[14] Emilia G. Teaching MIR: Educational Resources
Related To Music Information Retrieval. In Pro-
ceedings of the 13th International Symposium on
Music Information Retrieval (ISMIR 2012). Inter-
national Society for Music Information Retrieval,
2012.

[15] Eric Larson and Ross Maddox. Real-Time Time-
Domain Pitch Tracking Using Wavelets. 2005.

[16] Victor Lazzarini. Sound Processing with the
SndObj Library: An Overview. In Proceedings of
the 4th International Conference on Digital Audio
Effects (DAFX 2001), pages 6–8, 2001.

AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29
Page 6 of 7



Six TarsosDSP, a Real-Time Audio Processing Framework in Java

[17] Benoathieu, Slim Essid, Thomas Fillon, Jacques
Prado, and Gaichard. YAAFE, an Easy to Use and
Efficient Audio Feature Extraction Software. In
Proceedings of the 11th International Symposium
on Music Information Retrieval (ISMIR 2010),
pages 441–446. International Society for Music In-
formation Retrieval, 2010.

[18] D. McEnnis, C. McKay, and I. Fujinaga. jAudio: A
Feature Extraction Library. In Proceedings of the
6th International Symposium on Music Information
Retrieval (ISMIR 2005), 2005.

[19] Philip McLeod. Fast, Accurate Pitch Detection
Tools for Music Analysis. PhD thesis, University
of Otago. Department of Computer Science, 2009.

[20] Phillip McLeod and Geoff Wyvill. A Smarter Way
to Find Pitch. In Proceedings of the International
Computer Music Conference (ICMC 2005), 2005.

[21] E.X. Merz. Sonifying Processing: The Beads Tuto-
rial. CreateSpace, 2011.

[22] John Anderson Mills III, Damien Di Fede, and
Nicolas Brix. Music programming in minim. In
Proceedings of the New Interfaces for Musical Ex-
pression++ Conference (NIME++), Sydney, Aus-
tralia, 2010.

[23] Stephen Travis Pope and Chandrasekhar Ramakr-
ishnan. The Create Signal Library (Sizzle): Design,
Issues and Applications. In Proceedings of the 2003
International Computer Music Conference (ICMC
2003), 2003.

[24] M. J. Ross, H. L. Shaffer, A. Cohen, R. Freudberg,
and H. J. Manley. Average Magnitude Difference
Function Pitch Extractor. IEEE Trans. on Acous-
tics, Speech, and Signal Processing, 22(5):353–
362, October 1974.

[25] Gary P. Scavone and Perry R. Cook. RTMidi,
RTAudio, and a Synthesis Toolkit (STK) UPdate.
In Proceedings of the International Computer Mu-
sic Conference (ICMC 2005), 2005.

[26] Joren Six, Olmo Cornelis, and Marc Leman. Tar-
sos, a Modular Platform for Precise Pitch Analy-
sis of Western and Non-Western Music. Journal of
New Music Research, 42(2):113–129, 2013.

[27] Julius O. Smith and Phil Gosset. A Flexible
Sampling-Rate Conversion Method. In Proceed-
ings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 1984), vol-
ume 2, 1984.

[28] Thomas Stubbe. Geautomatiseerde vorm- en struc-
tuuranalyse van muzikale audio. Master’s thesis,
Universiteit Gent, 2013.

[29] George Tzanetakis and Perry Cook. MARSYAS: a
Framework for Audio Analysis. Organized Sound,
4(3):169–175, December 1999.

[30] K. van den Doel and D. K. Pai. JASS: A Java Audio
Synthesis System for Programmers. In J. Hiipakka,
N. Zacharov, and T. Takala, editors, Proceedings of
the 7th International Conference on Auditory Dis-
play (ICAD 2001), pages 150–154, 2001.

[31] Werner Verhelst and Marc Roelands. An Overlap-
Add Technique Based on Waveform Similarity
(WSOLA) for High Quality Time-Scale Modifi-
cation of Speech. In IEEE International Confer-
ence on Acoustics Speech and Signal Processing
(ICASSP 1993), pages 554–557, 1993.

[32] Michael Wager. Entwicklung eines Systems zur au-
tomatischen Notentranskription von monophonis-
chem Audiomaterial. Master’s thesis, Hochschule
Ausburg, 2011.

AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29
Page 7 of 7


