

### Music Information Retrieval Opportunities for digital musicology

Joren Six IPEM, University Ghent

October 30, 2015







### MIR introduction

### Definition

Music Information Retrieval (MIR) is the **interdisciplinary** science of extracting and processing **information** from music.

MIR combines insights from musicology, computer science, library sciences, psychology, machine learning and cognitive sciences.



## MIR introduction

6/64

 ${\sf MIR}$  tasks process Musical information. Musical information can be categorized into signals and symbols.

#### Definition

Signals are representations of analog manifestations and replicate perception. Symbols are discretized, limited and replicate content.

Example: The task of transcribing a lecture is a conversion of a signal into the symbolic domain. An audio recording serves as input, a text is the output. The symbolic representation is easy to index but lacks nuance.

5/64



## Tasks - Transcription

#### Transcription

- Source separation
- Instrument recognition
- Polyphonic pitch estimation and chord detection

7/64

 Tempo and Rhythm extraction

Signal  $\rightarrow$  symbolic

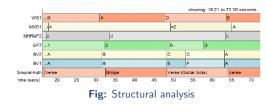

9:##e , , , , , , ,

Fig: Music transcription



# Tasks - Structure analysis







## Tasks - Music recommendation



- **Fig:** Spotify automatically generates playlists based on listening behavior.
- Music recommendation and automatic play-list generation.
  - Content based: Signal  $\rightarrow$  symbolic.
  - ► Based on (listening) behavior: Symbolic → symbolic.

9/64



## Tasks - Other Tasks

- Score following: automatic score page turning or trigger effects based on musical content.
- Emotion recognition: label audio according to emotional content.
- Automatic Cover song identification.
- Optical music recognition: convert images of scores to digital scores.
- Symbolic music retrieval.
- ► Automatic genre recognition.

#### MIR Tasks

Most tasks enable to browse, categorize, query, discover  $music^{10/64}$  in large databases.





## Musical Information

#### Signals

- Recorded musical performances
  - ► Video
  - Audio
  - MIDI
  - Motion capture
- Scans of scores

. .

### Symbols

- Meta-data
  - Artist
  - ► Title
  - ► Album-name
  - LabelComposer
  - Instrumentation
- Lyrics
- ► Tags, reviews, ratings
- Digitized scores 11/64



# Musical Information - Examples

### Digital representations of Liszt's Liebestraum No.3.

| A LOVE DREAM         | 221<br>Front Liout |
|----------------------|--------------------|
|                      | मी, मिरो<br>       |
|                      | in i<br>in fin     |
|                      |                    |
| <u>Frank Bar</u> tin | tid w              |
|                      |                    |

Fig: Scanned score of Liszt's Liebestraum No.3.

- Scanned score
- MusicXML score
- ► MIDI synthesis
- ► MIDI performance
- Audio recording of a performance
  - Arthur RubinsteinDaniel Barenboim
    - 12/64



## Musical Information

Scores can be seen as a model of a performance.

### Quote

*Essentially, all models are wrong, but some are useful.* - George E. P. Box

Models aim to reduce dimensions, complexity and improve understanding and readability.

13/64



- Monophonic pitch estimation [4, 9, 12]
- Content based audio search [18]
- ► Automatic Genre classification

UNIVERSITEIT GENT

## Challenging Tasks

### Un-mix the mix

Decomposing a mixed audio signal is very hard. Masking, overlapping partials make e.g. polyphonic pitch detection hard.





15/64

Fig: How to unmix the mix?



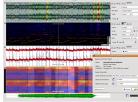



Fig: Sonic Visualizer, an application for viewing and analysing the contents of music audio files.

#### 14/64

FACULTY OF ARTS AND PHILOSOPHY

## Tools - Sonic Visualizer

Sonic Visualizer offers a plugin-system with:

- Beat tracking
- ► Onset deteciton
- Pitch tracking
- Melody detection
- Chord estimations

sonicvisualiser.org



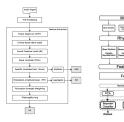






Fig: Tarsos: tone scale extraction and analysis

Extracting and analysing tone scales from music.


- ► Tone scale extraction
- ► Tone scale analysis
- Transcription of ethnic music

http://0110.be/Software





## **MIR Methods**



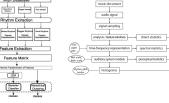



Fig: Input  $\rightarrow$  feature(s)  $\rightarrow$  feature processing  $\rightarrow$  output.



### MIR Methods

Bag of features approach to represent e.g. a musical genre. Sometimes more than 100 features are used[8].

- MFCC, timbral characteristic
- Spectral centroid
- Spectral moment
- Zero crossing rate
- ► Number of low energy frames
- Autocorrelation lag
- ► Frequency
- ► ...

21/64



## Methodological problems

MIR research is often limited by (over?) simplification:

- It focuses mainly on classical western art music or popular music with ethnocentric terminology like scores, chords, tone scale, chromagrams, instrumentation, rhythmical structures.
- It is mainly goal oriented and pragmatic (MIREX) without explaining processes[1]. More engineering than science?
- Unclear which features correlate with which cognitive processes.
- It is mainly concerned with a limited, disembodied view on music: disregarding social interaction, movement, dance, the body, individual or cultural preferences. 22/64



## Methodological problems

# UNIVERSITEIT GENT

### Quote

Essentially, all MIR-research is wrong, but some is useful. - Me

What follows are two examples of what aims to be useful MIR-research.



### Tarsos

Tarsos[14, 15] is a tool to extract, analyze and document tone scales and tone scale diversity.

It is mainly useful for analyzing music with an undocumented tone-scale. This is the case for a lot of ethinic music.



## Introduction

Tarsos was developed to analyze the dataset of the museum for Central Africa, Tervuren

- ► 30000 digitized sound recordings
- ► 3000 hours of music
- Meta-data database with contextual data



**Fig:** Locations of recordings



### Demo

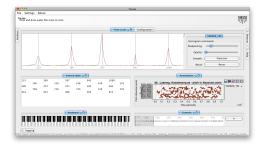
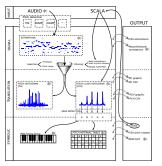



Fig: Tarsos live demonstration


26/64







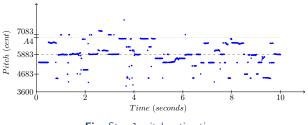
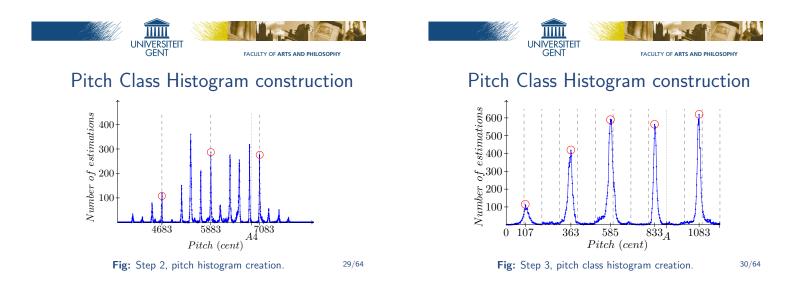
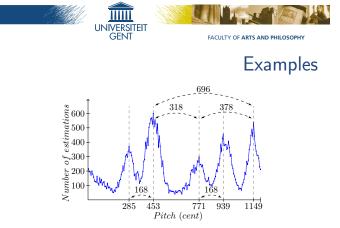
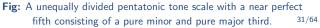
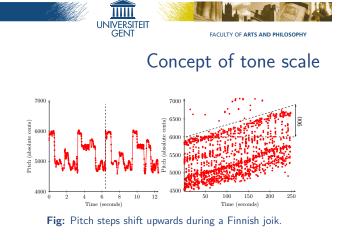
27/64

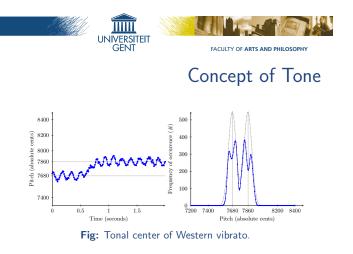




FACULTY OF ARTS AND PHILOSOPHY

## Pitch Class Histogram construction



Fig: Step 1, pitch estimation.











33/64

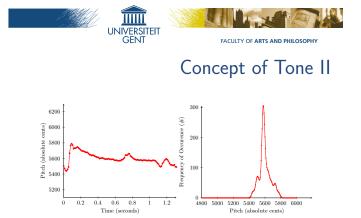



Fig: Pitch gesture in an Indian raga.

34/64



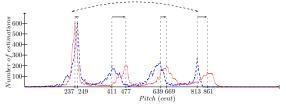



Fig: Detuning of a mono-chord during performance.

35/64



# Relating Timbre and Scale

### Question

Why are some tones scales or pitch intervals much more popular than others? Why are instruments tuned the way they are?

There is a theory[13, 10] that relates scale and timbre. The theory identifies points of maximum consonance that can be used to construct an optimal<sup>1</sup> scale.

<sup>1</sup>In terms of consonance

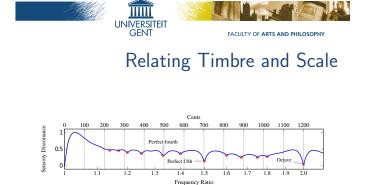



Fig: Dissonance curve for idealized harmonic instrument.



# Relating Timbre and Scale

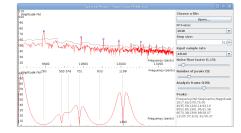



Fig: Screenshot of automatic timbre-scale mapping.

38/64



# Relating Timbre and Scale



## Conclusion

The consonance theory is currently **not well supported by measurements**. The dataset with African music has a large diversity in instrumentation and tone scales and offers an opportunity to support the theory.



Tarsos offers opportunities to answer basic musicological questions:

- Is there a change in tone scale use over time? Is the 100 cents interval used more in recent years? Is there an acculturation effect?
- Is there a systematic relation between timbre and scale?



## What is Acoustic Fingerprinting



Figure: A generalized audio fingerprinter scheme.

- 1. Audio is fed into the system,
- 2. Features are extracted and fingerprints constructed
- 3. The fingerprints are compared with a database containing
- fingerprints of reference audio.4. The audio is either identified or, if no match is found, labeled as unknown.
  - 41/64



# Why Audio Fingerprinting?

- Identifying short audio fragments
- Duplicate detection in large digital music archives
- Digital rights management applications (SABAM)
- Music structure analysis
- Analysis of techniques and repertoire in DJ-sets
- ► Synchronization of audio (and video) streams
- ▶ Alignment of extracted features with audio[17]

42/64

Fig: Shazam

service

music recognition



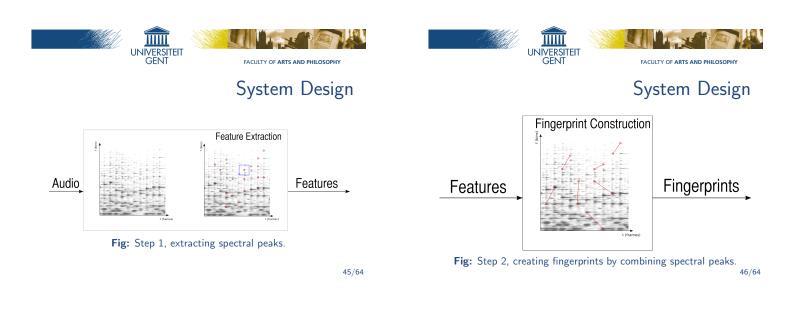
## Demo Panako

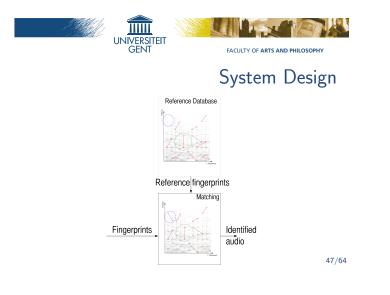
UNIVERSITEIT GENT

System Design



**Fig:** Spectrogram in Aphex Twin's *Windowlicker* 

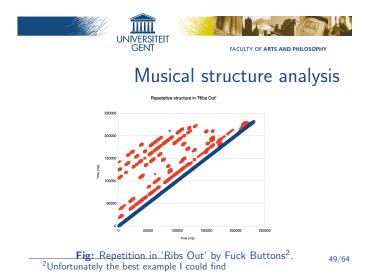

Current audio fingerprinting systems use fingerprints based on:


► Spectral Peaks [18, 16, 6]

- Onsets in spectral bands [5]
- ▶ Other features [2, 7, 11, 3]

Panako[16]

43/64








Acoustic fingerprinting can provide opportunities for digital musicology:

- 1. Analysis of repetition within songs
- 2. Comparison of versions/edits
- 3. Audio and audio feature alignment to share datasets
- 4. DJ-set analysis





# Radio Edit vs. Original

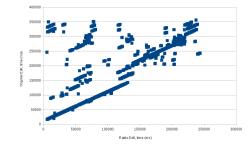



Fig: Radio edit vs. original version of Daft Punk's Get Lucky.  $_{50/64}$ 



## Exact Repetition Over Time

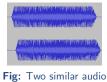



Fig: How much *cut-and-paste* is used on average for a set of 20000 recordings. 51/64



# Synchronization of audio streams

Audio synchronization can be used for:



streams out of sync

- Aligning unsynchronized audio streams from several microphones
- Aligning video footage by using audio
- Aligning audio and extracted features
- ► Aligning audio and data[17] 52/64



### Synchronization of audio streams



Fig: Microphone placement for symphonic orchestra and synchronization Audio synchronization using acoustic fingerprinting is *submillisecond accurate*. If microphone placement spans several meters and with the speed of sound being 340.29m/s:

| Delay (ms) |
|------------|
| 3          |
| 6          |
| 9          |
|            |

53/64

55/64

### UNIVERSITEIT GENT

## Analysis of repertoire and techniques used in DJ-Sets

An extension of the spectral peak

fingerprinting method allows

 time-stretching, pitch-shifting and tempo change[16]. Given a DJ-set and reference audio<sup>a</sup> the following can be extracted automatically:
 Which parts of which songs were played and for how long

Fig: a DJ

 Which parts of which songs were played and for how long
 Which modifications were applied (percentage modification of time and frequency)

<sup>a</sup>Tracklists of DJ-Sets can be found on http://www.1001tracklists.com/



# Practical Audio Fingerprinting

Panako[16] was used to generate the example data<sup>3</sup>, an open source audio fingerprinting system available on http://panako.be.

These subapplications of Panako were used:

- monitor during the live demo.
- compare for the comparison, structure analysis.
- monitor can also be used for DJ-set analysis.

Other usable fingerprinters are audfprint and echoprint. <sup>3</sup>Some methods implemented within Panako are patented (US6990453). UNIVERSITEIT GENT

## Bibliography I

### 

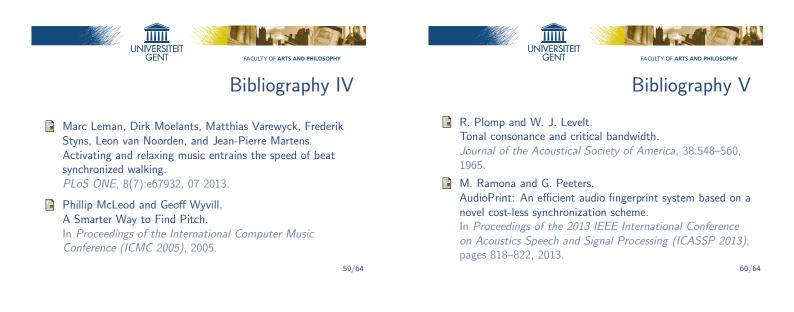
- Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsma. A review of audio fingerprinting. The Journal of VLSI Signal Processing, 41:271–284, 2005.
- Michele Covell and Shumeet Baluja.
  Known-Audio Detection using Waveprint: Spectrogram Fingerprinting by Wavelet Hashing.
   In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP 2007), 2007.

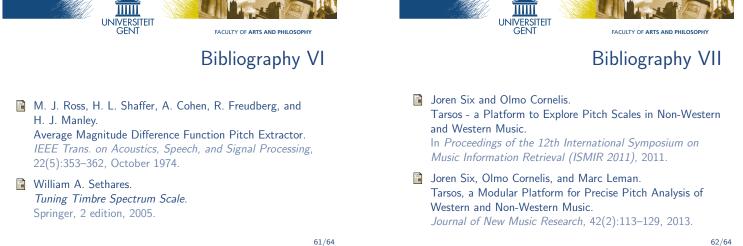
56/64



### **Bibliography II**

Alain de Cheveigné and Kawahara Hideki. YIN, a Fundamental Frequency Estimator for Speech and Music. The Journal of the Acoustical Society of America,


111(4):1917–1930, 2002.


 Dan Ellis, Brian Whitman, and Alastair Porter.
 Echoprint - an open music identification service.
 In Proceedings of the 12th International Symposium on Music Information Retrieval (ISMIR 2011), 2011.

57/64



In Proceedings of the 3th International Symposium on Music Information Retrieval (ISMIR 2002), 2002.





61/64



# Bibliography VIII

- Joren Six and Marc Leman. Panako - A Scalable Acoustic Fingerprinting System Handling Time-Scale and Pitch Modification. In *Proceedings of the 15th ISMIR Conference (ISMIR* 2014), 2014.
- Joren Six and Marc Leman.
  Synchronizing Multimodal Recordings Using Audio-To-Audio Alignment.
   Journal of Multimodal User Interfaces, 9(3):223–229, 2015.



### Avery L. Wang.

An Industrial-Strength Audio Search Algorithm. In Proceedings of the 4th International Symposium on Music Information Retrieval (ISMIR 2003), pages 7–13, 2003.