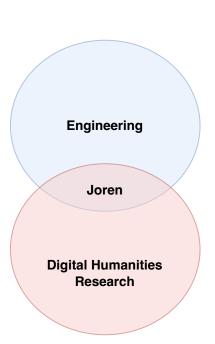


Music Information Retrieval

Opportunities for digital musicology


November 2025 - Ghent

Joren Six

Who?

- Studied computer science
- Researcher at Ghent Conservatory
- Phd at IPEM Engineering Systematic Musicology
- Involved as Post Doc:
 - Nano4Sports Low impact runner
 - CONBOTS COnnected throug roBOTS
 - AMPLE the Augmented Movement Platform for Embodied Learning
 - PaPiOM Patterns in Pitch Organization in Music
- Now at Ghent Center for Digital Humanities

What?

- Music Information Retrieval
 - Introduction
 - Music information Tasks
 - Methods Tools

MIR Examples:

- Pitch organisation: PaPiOM
 - Introduction
 - Music information
 - Methods
 - Case study
- Duplicate detection
 - Introduction
 - Music information
 - Methods
 - Applications

MIR introduction

Goal

An overview of the Music Information Retrieval research field while focusing on opportunities for digital musicology.

MIR introduction

Definition

Music Information Retrieval is the **interdisciplinary** science of extracting and processing **information** from music.

MIR combines insights from **musicology**, computer science, library sciences, psychology, machine learning and cognitive sciences.

MIR introduction

MIR tasks process information on music. **Music information** can be captured by **signals or symbols**.

Definition

Signals are representations of analog manifestations and replicate perception. Symbols are discretized, limited and replicate content.

Music information

GHENT UNIVERSITY

Signal

- Recorded performances
 - Video
 - Audio
 - Motion capture
 - MIDI
- Scans of scores

Symbols

- Meta-data
 - Artist
 - Title
 - Album-name
 - Label
 - Composer
 - Instrumentation ...
- Lyrics
- Rags, reviews, ratings
- Digitized scores

Music information

Scan

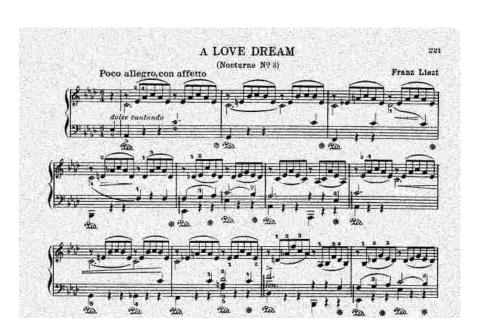


Fig: Scanned score

MusicXML

```
<step>E</step>
  <alter>-1</alter>
  <octave>4</octave>
<duration>3</duration>
<voice>1
<type>eighth</type>
<stem>up</stem>
<staff>1</staff>
<beam number="1">end</peam>
```

Code: MusicXML Digitized score

Music information: Signal or symbol?

Signal or symbol?

Video

MIDI

0:00 / 0:17

Recorded MIDI

Arthur Rubinstein

Daniel Barenboim

▶ 0:00 / 0:12 **◆**

Music information

A score can be seen as a model of a performance.

Quote

"Essentially, all models are wrong, but some are useful" - George E.P. Box

Models aim to reduce dimensions, complexity and improve understanding and readability.

MIR tasks: music transcription

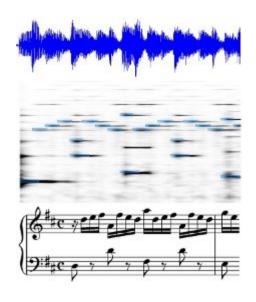


Fig: music transcription

- Source separation
- Instrument recognition
- Pitch estimation and segmentation
- Tempo and rhythm extraction

Task type: signal → symbolic

MIR tasks: structural analysis

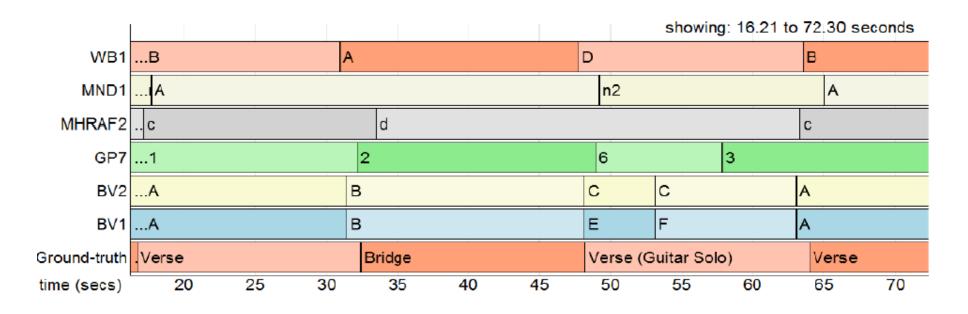


Fig: structural analysis

Task type: signal → symbolic

MIR tasks: music recommendation

Fig: Spotify automatically generates playlists based on listening behaviour

Music recommendation

- Content based: signal → symbolic
- Based on (listening) behaviour: symbolic → symbolic

MIR tasks: other tasks

- Score following: page turning based on musical content
- Music emotion recognition
- Automatic cover song identification
- Optical music recognition: convert images of scores into digital scores
- Symbolic music retrieval
- Automatic genre recognition

MIR Tasks

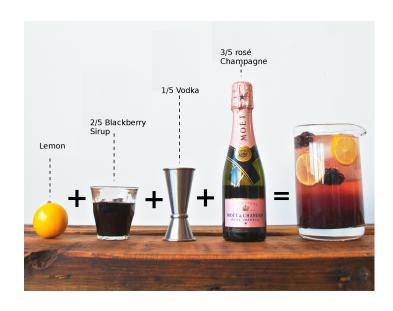
Most tasks enable to browse, categorize, query or discover music in large databases of music.

MIR tasks: ± Solved

Monophonic pitch estimation

De Cheveigné, A., & Kawahara, H. (2002). YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4), 1917-1930.

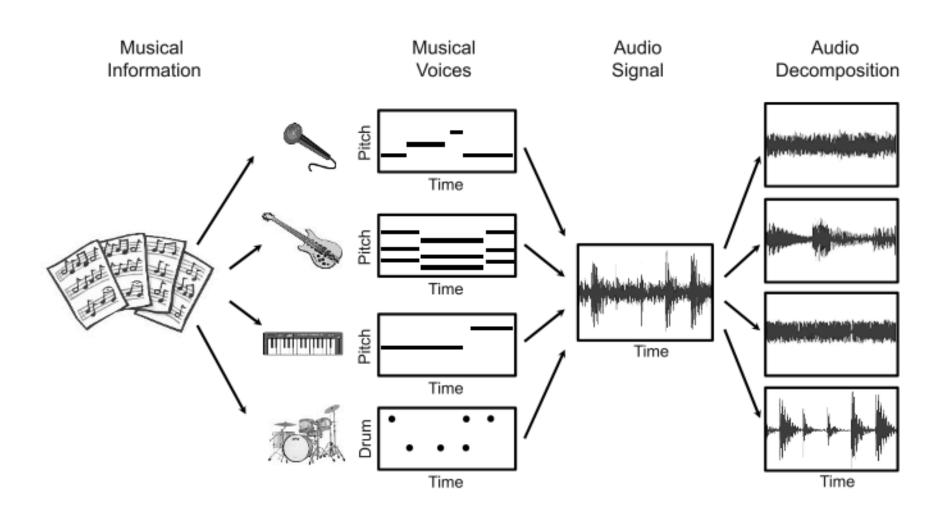
Content based audio search


Six, J., & Leman, M. (2014). Panako: a scalable acoustic fingerprinting system handling time-scale and pitch modification. In 15th International Society for Music Information Retrieval Conference (ISMIR-2014).

MIR tasks: challenges

Un-mix the mix

Decomposing a mixed audio signal is very very hard.



unmixing?

MIR tasks: challenges

MIR Methods - Bag of features

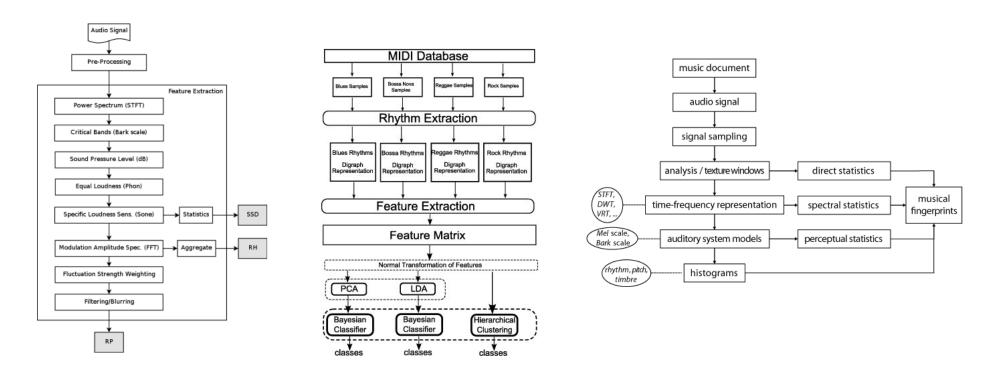


Fig: input → feature(s) → feature processing → output

MIR Methods - Bag of features

Bag of features and classifier to represent e.g. a musical genre.

- MFCC, timbral characteristic
- Spectral centroid
- Spectral moment
- Zero crossing rate
- Number of low energy frames
- Autocorrelation lag
- •

MIR Methods - Data based

System learns a solution from (many) correct examples.

- Denoising
- Decomposition
- Transcription
- Genre detection
- Al-music generation
- •

MIR Tools - Sonic visualiser

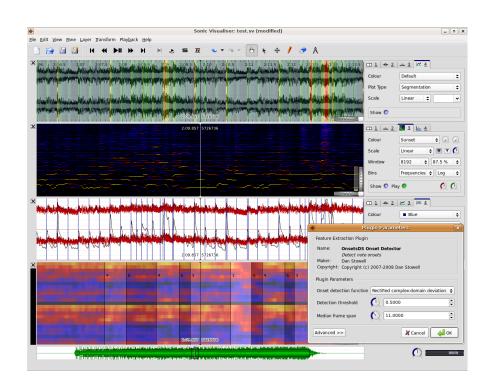


Fig: sonic visualiser

Sonic Visualiser is an application for viewing and analyzing the contents of audio files. It has support for:

- Beat tracking
- Cord estimation
- Melody detection
- Onset detection
- Annotations

Sonic visualiser

MIR Tools - Tartini

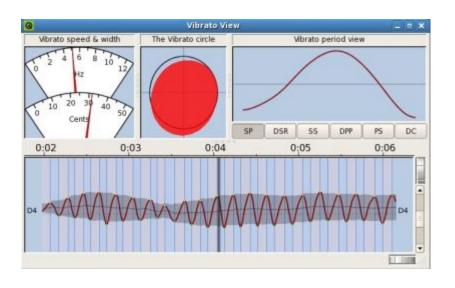


Fig: Tartini software

Specialized tool for (violin) pitch analysis

- Vibrato analysis
- Pitch contour
- Transcription

Tartini

MIR Tools - Music 21

A programming environment for symbolic music analysis

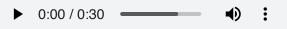
- Query rhythmic features
- Melodic contours
- Chord progressions

Music21

Fig: Music 21

MIR Tools - MusicLM: Generating Music From Text

Caption


The main soundtrack of an arcade game. It is fast-paced and upbeat, with a catchy electric guitar riff. The music is repetitive and easy to remember, but with unexpected sounds, like cymbal crashes or drum rolls.

A fusion of reggaeton and electronic dance music, with a spacey, otherworldly sound. Induces the experience of being lost in space, and the music would be designed to evoke a sense of wonder and awe, while being danceable.

A rising synth is playing an arpeggio with a lot of reverb. It is backed by pads, sub bass line and soft drums. This song is full of synth sounds creating a soothing and adventurous atmosphere. It may be playing at a festival during two songs for a buildup.

Slow tempo, bass-and-drums-led reggae song. Sustained electric guitar. High-pitched bongos with ringing tones. Vocals are relaxed with a laid-back feel, very expressive.

Generated audio

MIR Tools - Suno: Generating Music From Text

Prompt: A short operatic **aria** about Music Information Retrieval: the interdisciplinary science of extracting and processing information from music. It should feature a booming voice and a **whistle note**.

Data Sonata

[Verse]
A quest begins
A grand design
To seek what's within.
The sounds that shine.

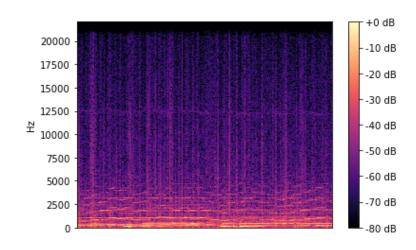
[Prechorus]
Oh the signal it sings
The code that it brings

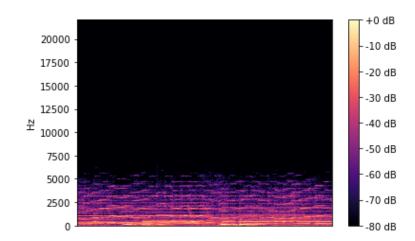
[Chorus] Data Sonata Ah ha ha Data Sonata Ah ha ha

[Verse 2]
Algorithms race
To catch the beat
Each sonic space
A coded treat

[Prechorus]
Oh the signal it sings
The code that it brings

[Chorus] Data Sonata Ah ha ha Data Sonata Ah ha ha


Suno v4.5, see: suno.com


MIR Tools - Audio Denoising

Noisy input

Denoised

▶ 0:00 / 0:05 **◆**

► 0:00 / 0:05 **→**

MIR tools - Apple Music Sing

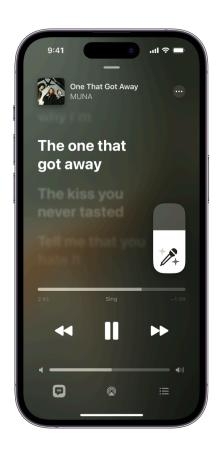
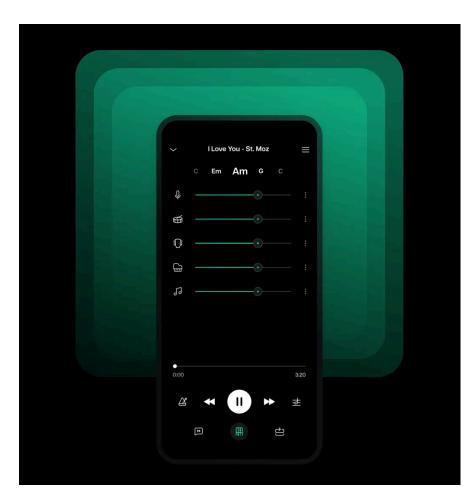



Fig: Apple Music Sing, surpress singing voice from any song

MIR tools - Moises.ai - Tools for musicians

Vid: source separation with Moises.ai

Tools for musicians or analysis:

- Chord detection
- Source separation
- Tempo estimation

See: Moises.ai

MIR Methods - Problems

MIR research is often limited by (over?) simplification:

- MIR focuses mainly on popular music or classical western art music with ethnocentric terminology like scores, chords, tone scale, chromagrams, instrumentation, rhythmical structures.
- It is mainly goal oriented and pragmatic (MIREX) without explaining processes. More engineering than science?
- Unclear which features correlate with which cognitive processes.
- It is mainly concerned with a **limited, disembodied view on music**: disregarding social interaction, movement, dance, the body, individual or cultural preferences.

MIR Methods - Problems

Quote

Essentially, all MIR-research is wrong, but some is useful

PART II

PaPiOM

Patterns in Pitch Organization in Music

Patterns

"Patterns are fundamental in music around the world"

Patterns

"Patterns are fundamental in music around the world"

Why study cross-cultural patterns in music?

• Origins of music

Patterns

"Patterns are fundamental in music around the world"

- Origins of music
- Evolution of music

Patterns

"Patterns are fundamental in music around the world"

- Origins of music
- Evolution of music
- Non-human musicality

Patterns

"Patterns are fundamental in music around the world"

- Origins of music
- Evolution of music
- Non-human musicality
- Nature-nurture debates

Patterns

"Patterns are fundamental in music around the world"

Why study cross-cultural patterns in music?

- Origins of music
- Evolution of music
- Non-human musicality
- Nature-nurture debates
- Definition of music

Action and Perception

Action and Perception

Context-poor

Corpora

• Context-rich

GHENT UNIVERSITY

Action and Perception

- Context-poor
- Data-poor

- Context-rich
- Data-rich

Action and Perception

- Context-poor
- Data-poor
- Controlled

- Context-rich
- Data-rich
- Wild

Action and Perception

- Context-poor
- Data-poor
- Controlled
- Many studies

- Context-rich
- Data-rich
- Wild
- Few large scale

Goal

PaPiOM: perform large-scale corpus-based studies to identify patterns in pitch use in music. Link corpus-based findings with experimental, perceptual findings.

Potential patterns common in music around the world:

Distinctness of pitches

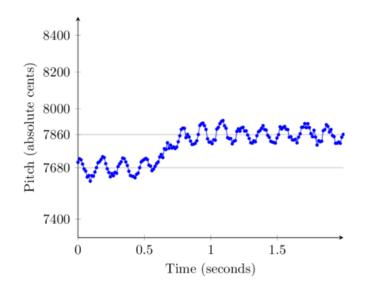
- Distinctness of pitches
- Octave equivalence

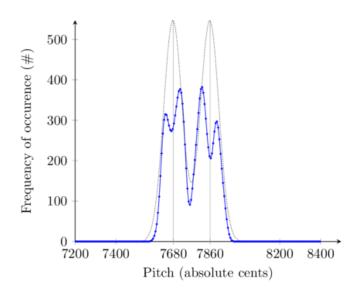
- Distinctness of pitches
- Octave equivalence
- Number of pitch classes

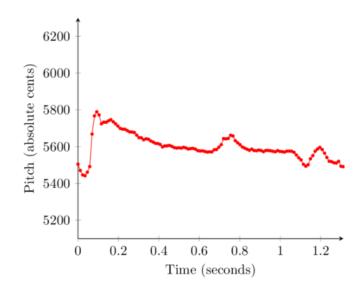
- Distinctness of pitches
- Octave equivalence
- Number of pitch classes
- Intervals between pitch classes

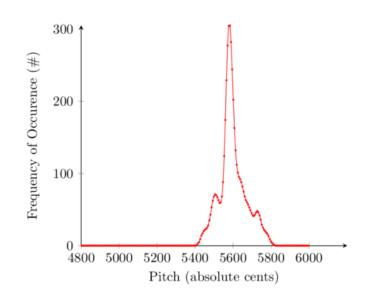
PaPiOM: Music Information

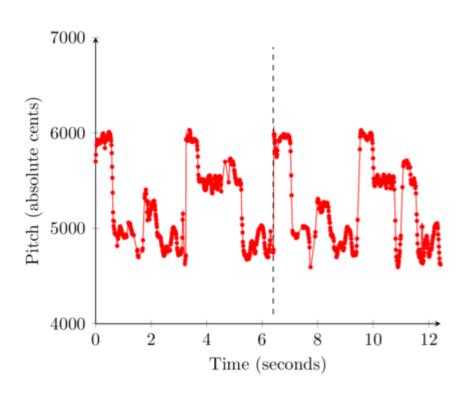
Starting from a recording we need a semi-automated way to extract:

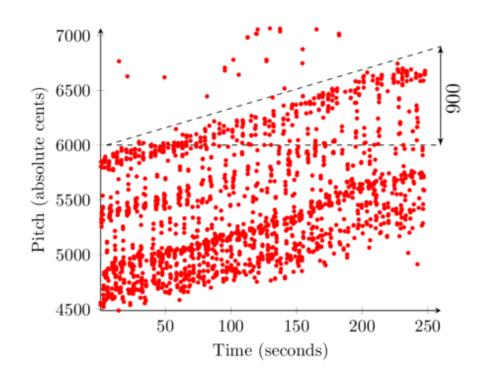

- Main pitch contour
- Pitch Class Set (scale) To interpret, other data is needed
- Meta-data: recording place, date, people, language, ...


Methods: pitch tracking


Methods: pitch tracking


Methods: pitch tracking - Pitch Class?





Methods: pitch tracking - Pitch Class?

Methods: pitch tracking - Pitch Class?

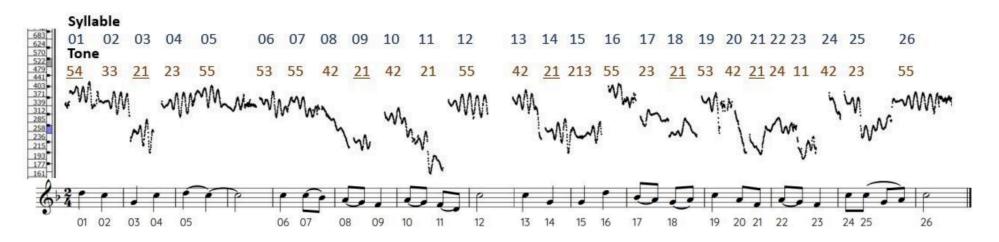


Fig: Song of Moonlight - Chaozhou, see Zhang (2023)

Fig: Wax Cylinders, most poplar around 1896–1916 with a capacity of about 2 minutes.

+ Culturally diverse

Fig: Wax Cylinders, most poplar around 1896–1916 with a capacity of about 2 minutes.

- + Culturally diverse
- + Geographically spread

Fig: Wax Cylinders, most poplar around 1896–1916 with a capacity of about 2 minutes.

- + Culturally diverse
- + Geographically spread
- + 'Uninfluenced'

Fig: Wax Cylinders, most poplar around 1896–1916 with a capacity of about 2 minutes.

- + Culturally diverse
- + Geographically spread
- + 'Uninfluenced'

- Noisy

Fig: Wax Cylinders, most poplar around 1896–1916 with a capacity of about 2 minutes.

- + Culturally diverse
- + Geographically spread
- + 'Uninfluenced'
- Noisy
- Short

Fig: Wax Cylinders, most poplar around 1896–1916 with a capacity of about 2 minutes.

- + Culturally diverse
- + Geographically spread
- + 'Uninfluenced'
- Noisy
- Short
- Unbalanced

Fig: Wax Cylinders, most poplar around 1896–1916 with a capacity of about 2 minutes.

IU - K.E. Laman, 1911, French Equatorial

IU - G. Herzog, 1930, Liberia

RMCA - P. Tempels, 1944, RDC

RMCA - P. Tempels, 1944, RDC - Denoised

▶ 0:00 / 0:07 **------ •) :**

▶ 0:00 / 1:48 **→**

► 0:00 / 3:01 **-**

► 0:00 / 3:01 **-**

- The concept of pitch class is present
- 170 or 240 cents as building blocks
- 2 to 8 pitch classes
- Fifth is almost always present.

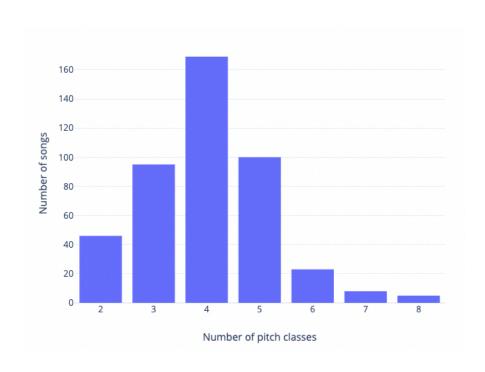


Fig: The number of songs for each pitch class set size.

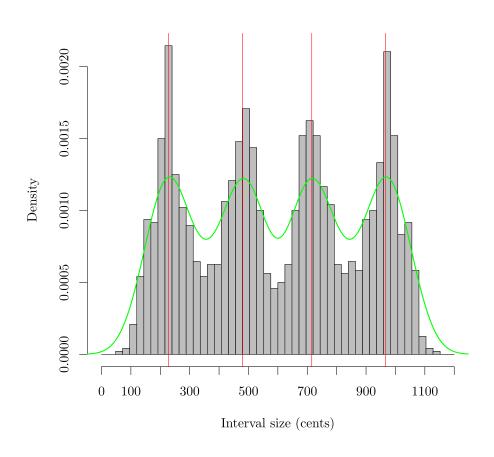


Fig: Pitch intervals between all pitch classes for recordings with 5 identified pitch classes.

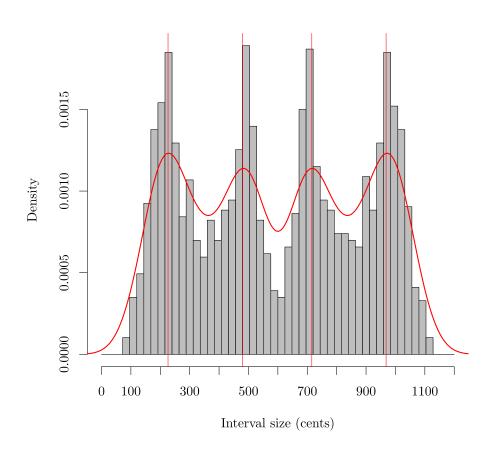


Fig: Pitch intervals between all pitch classes for recordings with 4 identified pitch classes.

- Bias: selection or recording technology
- Analysis assumes octave equivalence (498 = 702)
- Absolute pitch unclear
- Timbre ignored
- Unbalanced dataset
- Release dataset without audio
- Separating scale origins difficult
 - perception
 - production
 - information content minimization
 - transmission

PaPiOM: Summary

PaPiOM: Summary

• MIR task: find patterns in pitch use

PaPiOM: Summary

- MIR task: find patterns in pitch use
- Music information: signal to symbolic pitch classes

PaPiOM: Summary

- MIR task: find patterns in pitch use
- Music information: signal to symbolic pitch classes
- Feature based method: pitch tracking and processing

PaPiOM: Summary

- MIR task: find patterns in pitch use
- Music information: signal to symbolic pitch classes
- Feature based method: pitch tracking and processing
- Case study: 400 historic recordings reveal patterns

PART III

Duplicate detection for digital musicology

Duplicate detection: Introduction

What if we have an easy way to detect duplicate audio?

Duplicate detection: Introduction

Start or stop audio

Match found: Estimated reference time (s): 0.00

Press the start button to begin audio fingerprinting.

Duplicate detection: introduction

Duplicate detection: Music Information

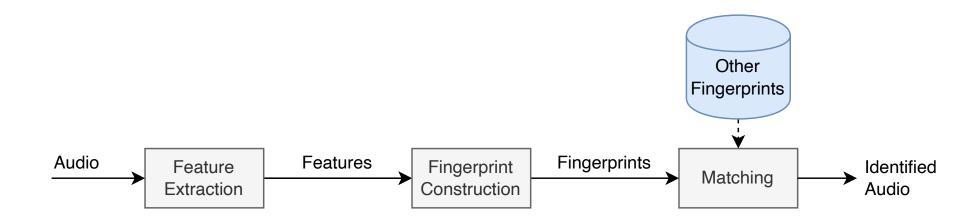


Fig: General acoustic fingerprinting schema. Audio to fingerprints.

Duplicate detection: methods

Duplicate detection: Music Information

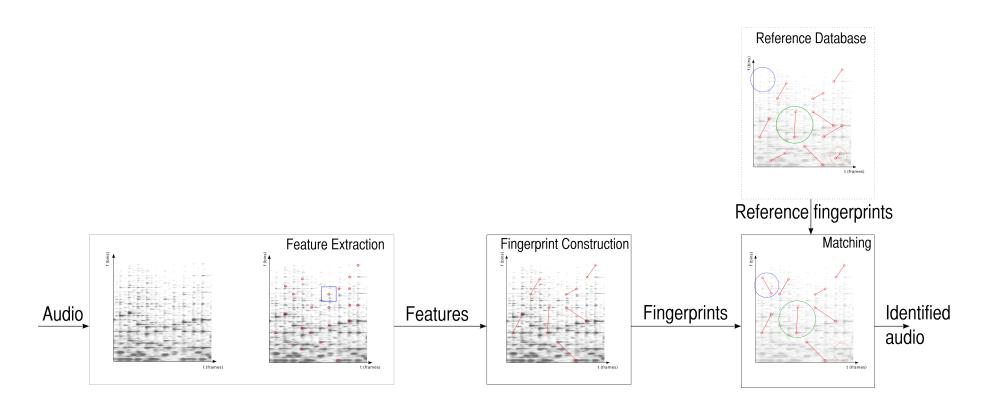


Fig: Spectral peak based acoustic fingerprinting schema

Duplicate detection: Applications - Musical structure

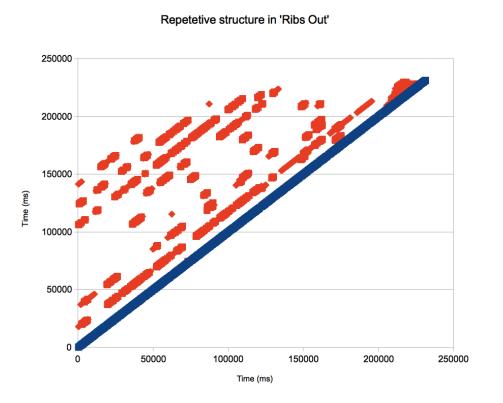


Fig: structure in 'Ribs Out' by Fuck Buttons

► 0:00 / 0:30 **→**

Duplicate detection: Applications - Exact repetition in music

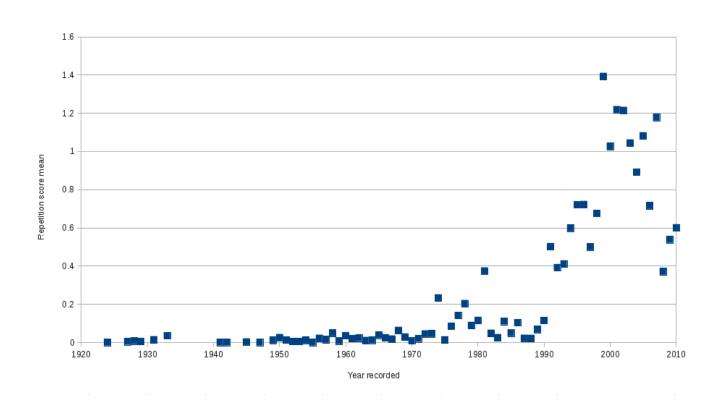


Fig: exact repetition in popular music over the years

Duplicate detection: versions

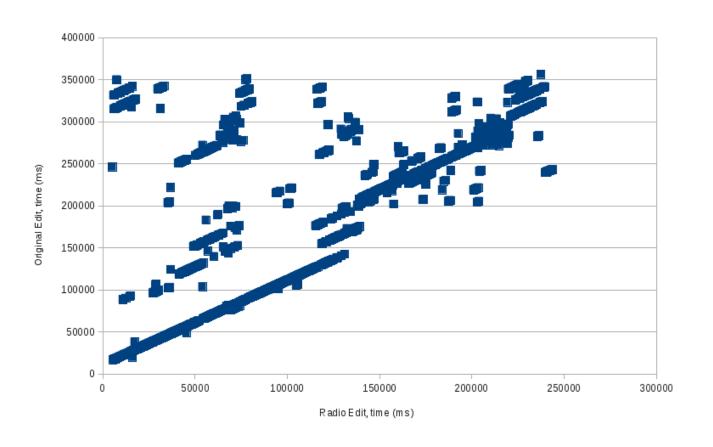
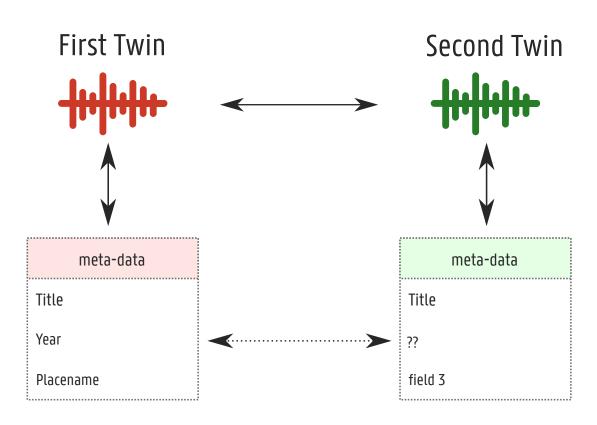


Fig: Radio vs original edit

Duplicate detection: Applications - DJ-set analysis



Duplicates after time-stretching, pitch-shifting and tempo change:

- Which parts of which songs were played and for how long
- Which modifications were applied (percentage modification of time and frequency)

Duplicate detection: Applications - Compare metadata

Duplicate detection: Applications - Twins

	First twin	Second twin		
Audio	▶ 0:00 / 0:20 →	▶ 0:00 / 0:20 ◄) :		
Year recorded	?	1949		
Title	The daughter Mandega	?		
People	Zezuru	Shona / Zezuru		

Duplicate detection: Applications - Merge digital music archives

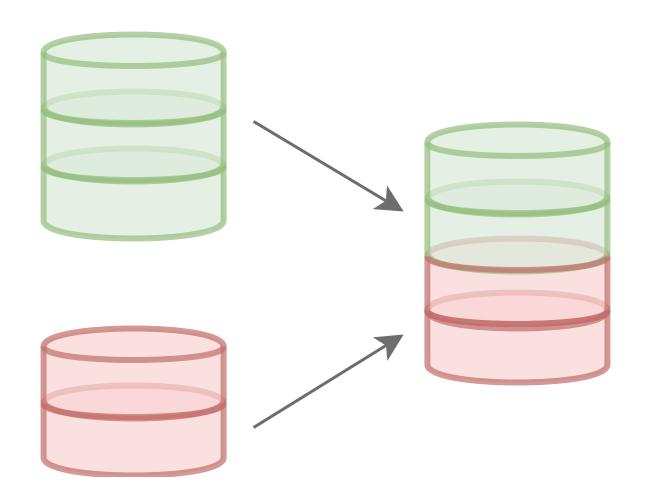


Fig: merge digital music archives: two + three = four

Duplicate detection: Applications - Improve listening experiences

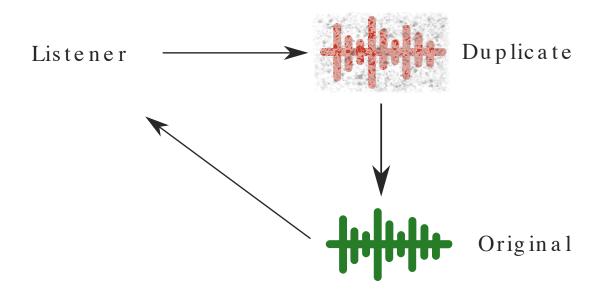


Fig: Redirect listeners to higher quality audio

Duplicate detection: Applications - Re-use segmentation

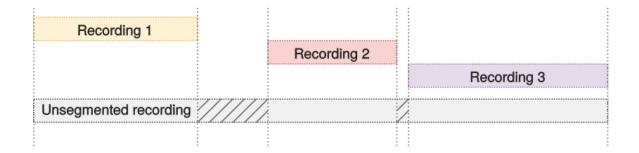


Fig: segmentation meta-data reuse.

Audio: IPEM-archive example

• MIR task: find duplicate audio

- MIR task: find duplicate audio
- Music information: signal to symbolic, searchable fingerprints

- MIR task: find duplicate audio
- Music information: signal to symbolic, searchable fingerprints
- Feature based method: spectral peaks

- MIR task: find duplicate audio
- Music information: signal to symbolic, searchable fingerprints
- Feature based method: spectral peaks
- Many applications

General Summary

- MIR is the interdisciplinary science of extracting and processing information from music.
- Symbols and signals encode musical information.
- MIR offers opportunities for innovative (large scale) digital musicology through defining and identifying meaningful patterns in music corpora. Patterns such as pitch organisation.
- Duplicate detection has many applications and can use spectral information to identify matches between audio.

Thanks!

joren.six@ugent.be