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Abstract

This paper presents Tarsos, a modular software plat-
form used to extract and analyze pitch organization
in music. With Tarsos pitch estimations are gener-
ated from an audio signal and those estimations are
processed in order to form musicologically meaningful
representations. Tarsos aims to offer a flexible sys-
tem for pitch analysis through the combination of an
interactive user interface, several pitch estimation al-
gorithms, filtering options, immediate auditory feed-
back and data output modalities for every step. To
study the most frequently used pitches, a fine-grained
histogram that allows up to 1200 values per octave
is constructed. This allows Tarsos to analyze devi-
ations in Western music, or to analyze specific tone
scales that differ from the 12 tone equal tempera-
ment, common in many non-Western musics. Tarsos
has a graphical user interface or can be launched us-
ing an api - as a batch script. Therefore, it is fit for
both the analysis of individual songs and the analysis
of large music corpora. The interface allows several
visual representations, and can indicate the scale of

the piece under analysis. The extracted scale can
be used immediately to tune a midi keyboard that
can be played in the discovered scale. These features
make Tarsos an interesting tool that can be used for
musicological analysis, teaching and even artistic pro-
ductions.

Keywords: Pitch Detection, Computa-
tional Ethnomusicology, Pitch Class His-
togram, Tone Scale Extraction

1 Introduction

In the past decennium, several computational tools
became available for extracting pitch from audio
recordings (Clarisse et al., 2002; Cheveigné & Hideki,
2002; Klapuri, 2003). Pitch extraction tools are
prominently used in a wide range of studies that
deal with analysis, perception and retrieval of mu-
sic. However, up to recently, less attention has been
paid to tools that deal with distributions of pitch in
music.
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The present paper presents a tool, called Tarsos,
that integrates existing pitch extraction tools in a
platform that allows the analysis of pitch distribu-
tions. Such pitch distributions contain a lot of in-
formation, and can be linked to tunings, scales, and
other properties of musical performance. The tuning
is typically reflected in the distance between pitch
classes. Properties of musical performance may relate
to pitch drift within a single piece, or to influence of
enculturation (as it is the case in African music cul-
ture, see Moelants et al. (2009)). A major feature of
Tarsos is concerned with processing audio-extracted
pitches into pitch and pitch class distributions from
which further properties can be derived.

Tarsos provides a modular platform used for pitch
analysis - based on pitch extraction from audio and
pitch distribution analysis - with a flexibility that in-
cludes:

• The possibility to focus on a part of a song by
selecting graphically displayed pitch estimations
in the melograph.

• A zoom function that allows focusing on global
or detailed properties of the pitch distribution.

• Real-time auditory feedback. A tuned midi
synthesizer can be used to hear pitch intervals.

• Several filtering options to get clearer pitch
distributions or a more discretized melograph,
which helps during transcription.

In addition, a change in one of the user interface el-
ements is immediately propgated through the whole
processing chain, so that pitch analysis becomes easy,
adjustable and verifiable.

This paper is structured as follows. First, we
present a general overview of the different process-
ing stages of Tarsos, beginning with the low level au-
dio signal stage and ending with pitch distributions
and their musicological meaning. In the next part,
we focus on some case studies and give a scripting
example. The next part elaborates on the musical
aspects of Tarsos and refers to future work. The fifth
and final part of the main text contains a conclusion.

2 The Tarsos Platform

Figure 1 shows the general flow of information within
Tarsos. It starts with an audio file as input. The
selection of a pitch estimation algorithm leads to a
pitch estmations, which can be represented in dif-
ferent ways. This representation can be further op-
timized, using different types of filters for peak se-
lection. Finally, it is possible to produce an audio
output of the obtained results. Based on that output,
the analysis-representation-optimization cycle can be
refined. All steps contain data that can be exported
in different formats. The obtained pitch distribution
and scale itself can be saved as a scala file which in
turn can be used as input, overlaying the estimation
of another audio file for comparison.

In what follows, we go deeper into the several pro-
cessing aspects, dependencies, and particularities. In
this section we first discuss how to extract pitch es-
timations from audio. We illustrate how these pitch
estimations are visualized within Tarsos. The graphi-
cal user interface is discussed. The real-time and out-
put capabilities are described, and this section ends
with an explanation about scripting for the Tarsos
api. As a reminder: there is a manual available for
Tarsos at http://tarsos.0110.be/tag/JNMR.

2.1 Extracting pitch estimations from
audio

Prior to the step of pitch estimation, one should take
into consideration that in certain cases, audio prepro-
cessing can improve the subsequent analysis within
Tarsos. Depending on the source material and on the
research question, preprocessing steps could include
noise reduction, band-pass filtering, or harmonic/per-
cussive separation Nobutaka et al. (2010). Audio pre-
processing should be done outside of the Tarsos tool.
The, optionally preprocessed, audio is then fed into
Tarsos and converted to a standardized format1.

The next step is to generate pitch estimations.

1 The conversion is done using ffmpeg, a cross platform
command line tool to convert multimedia files between for-
mats. The default format is pcm wav with 16 bits per sample,
signed, little endian, 44.1kHz. Furthermore, all channels are
down mixed to mono.
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Figure 1: The main flow of information within Tar-
sos.

Each selected block of audio file is examined and
pitches are extracted from it. In figure 2, this step
is located between the input and the signal block
phases. Tarsos can be used with external and in-
ternal pitch estimators. Currently, there is support
for the polyphonic MAMI pitch estimator (Clarisse
et al., 2002) and any VAMP plug-in (Cannam et al.,
2010) that generates pitch estimations. The external
pitch estimators are platform dependent and some
configuration needs to be done to get them working.
For practical purposes, platform independent imple-
mentations of two pitch detection algorithms are in-
cluded, namely, YIN (Cheveigné & Hideki, 2002) and
MPM (McLeod & Wyvill, 2005). They are available
without any configuration. Thanks to a modular de-
sign, internal and external pitch detectors can be eas-
ily added. Once correctly configured, the use of these
pitch modules is completely transparent, as extracted
pitch estimations are transformed to a unified format,
cached, and then used for further analysis at the sym-
bolic level.

2.2 Visualizations of pitch estimations

Once the pitch detection has been performed, pitch
estimations are available for further study. Several
types of visualizations can be created, which lead,
step by step, from pitch estimations to pitch distri-
bution and scale representation. In all these graphs
the cent unit is used. The cent divides each octave
into 1200 equal parts. In order to use the cent unit for
determining absolute pitch, a reference frequency of
8.176Hz has been defined2, which means that 8.176Hz
equals 0 cents, 16.352Hz equals 1200 cents and so on.

A first type of visualization is the melograph repre-
sentation, which is shown in Figure 3. In this repre-
sentation, each estimated pitch is plotted over time.
As can be observed, the pitches are not uniformly dis-
tributed over the pitch space, and form a clustering
around 5883 cents.

A second type of visualization is the pitch his-
togram, which shows the pitch distribution regard-
less of time. The pitch histogram is constructed by

2See Appendix B for a discussion about pitch representation
in cents and the seemingly arbitrary reference frequency of
8.176Hz.
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Figure 2: Detailed block diagram representing all components of Tarsos, from input to output, from signal
level to symbolic level. All additional features (selection, filtering, listening) are visualized (where they come
into play). Each step is described into more detail in Chapter 3.
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Figure 3: A melograph representation. Estimations of the first ten seconds of an Indonesian Slendro piece
are shown. It is clear that pitch information is horizontally clustered, e.g. the cluster around 5883 cents,
indicated by the dashed horizontal line. For reference a dotted horizontal line with A4, 440Hz is also present.

assigning each pitch estimation in time to a bin be-
tween 0 and 144003 cents, spanning 12 octaves. As
shown in Figure 4, the peak at 5883 cents is now
clearly visible. The height of a peak represents the
total number of times a particular pitch is estimated
in the selected audio. The pitch range is the dif-
ference between the highest and lowest pitch. The
graph further reveals that some peaks appear every
1200 cents, or every octave.

A third type of visualization is the pitch class his-
togram, which is obtained by adding each bin from
the pitch histogram to a corresponding modulo 1200
bin. Such a histogram reduces the pitch distribution
to one single octave. A peak thus represents the total
duration of a pitch class in a selected block of audio.
Notice that the peak at 5883 cents in the pitch his-
togram (Figure 4) now corresponds to the peak at
1083 cents in the pitch class histogram (Figure 6).

It can also be useful to select only filter pitch esti-
mations that make up the pitch class histogram. The
most obvious ‘filter’ is to select only an interesting
timespan and pitch range. The distributions can be
further manipulated using other filters and peak de-
tection. The following three filters are implemented
in Tarsos:

The first is an estimation quality filter. It simply

314400 absolute cents is equal to 33488Hz, well above hu-
man hearing.
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Figure 4: A pitch histogram with an Indonesian Slen-
dro scale. The circles mark the most estimated pitch
classes. The dashed vertical lines show the same pitch
class in different octaves. A dotted vertical line with
A4, 440Hz, is used as a reference for the diapason.
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removes pitch estimations from the distribution be-
low a certain quality threshold. Using YIN, the qual-
ity of an estimation is related to the periodicity of the
block of sound analyzed. Keeping only high quality
estimations should yield clearer pitch distributions.

The second is called a near to pitch class filter.
This filter only allows pitch estimations which are
close to previously identified pitch classes. The pitch
range parameter (in cents) defines how much orna-
mentations can deviate from the pitch classes. De-
pending on the music and the research question, one
needs to be careful with this - and other - filters. For
example, a vibrato makes pitch go up and down -
pitch modulation - and is centered around a pitch
class. Figure 5a gives an example of Western vi-
brato singing. The melograph reveals the ornamental
singing style, based on two distinct pitch classes. The
two pitch classes are hard to identify with the his-
togram 5c but are perceptually there, they are made
clear with the dotted gray line. In contrast, figure
5b depicts a more continuous glissando which is used
as a building block to construct a melody in an In-
dian raga. For these cases, Krishnaswamy (2004b)
introduced the concept of two-dimensional ’melodic
atoms’. (In Henbing & Leman (2007) it is shown how
elementary bodily gestures are related to pitch and
pitch gestures.) The histogram of the pitch gesture
Figure 5d suggests one pitch class while a fundamen-
tally different concept of tone is used. Applying the
near to pitch class filter on this type of music could
result into incorrect results. The goal of this filter
is to get a clearer view on the melodic contour by
removing pitches between pitch classes, and to get a
clearer pitch class histogram.

The third filter is a steady state filter. The steady
state filter has a time and pitch range parameter.
The filter keeps only consecutive estimations that
stay within a pitch range for a defined number of
milliseconds. The default values are 100ms within a
range of 15 cents. The idea behind it is that only
’notes’ are kept and transition errors, octave errors
and other short events are removed.

Once a selection of the estimations are made or,
optionally, other filters are used, the distribution is
ready for peak detection. The peak detection algo-
rithm looks for each position where the derivative of
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Figure 6: A pitch class histogram with an Indonesian
Slendro scale. The circles mark different pitch classes.
For reference, the dashed lines represent the Western
equal temperament. The pitch class A is marked with
a dotted line.

the histogram is zero, and a local height score is calcu-
lated with the formula in (1). The local height score
sw is defined for a certain window w, µw is the aver-
age height in the window, σw refers to the standard
deviation of the height in the window. The peaks
are ordered by their score and iterated, starting from
the peak with the highest score. If peaks are found
within the window of the current peak, they are re-
moved. Peaks with a local height score lower than
a defined threshold are ignored. Since we are look-
ing for pitch classes, the window w wraps around the
edges: there is a difference of 20 cent between 1190
cent and 10 cent.

sw =
height− µw

σw
(1)

Figure 7 shows the local height score function ap-
plied to the pitch class histogram shown in Figure 6.
The desired leveling effect of the local height score is
clear, as the small peak at 107 cents becomes much
more defined. The threshold is also shown. In this
case, it eliminates the noise at around 250 cents. The
noise is caused by the small window size and local
height deviations, but it is ignored by setting thresh-
old t. The performance of the peak detection de-
pends on two parameters, namely, the window size
and the threshold. Automatic analysis either uses
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(a) Western vibrato melograph.
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(c) Western vibrato pitch histogram.
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(d) Indian raga pitch gesture histogram.

Figure 5: Visualization of pitch contours of Western and Indian singing; notice the fundamentally different
concept of tone. In the western example two distinct pitches are used, they are made clear with the dotted
gray lines. In Figure 5c two dotted gray curves are added, they represent the two perceived pitches.
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Figure 7: A local height score function used to detect
peaks in a pich class histogram. Comparing the orig-
inal histogram of figure 6 with the local height score
shows the leveling effect of the local height score func-
tion. The dashed vertical lines represents the West-
ern equal temperament, the dashed horizontal line
the threshold t.

a general preset for the parameters or tries to find
the most stable setting with an exhaustive search.
Optionally gaussian smoothing can be applied to the
pitch class histogram, which makes peak detection
more straightforward. Manual intervention is some-
times needed, by fiddling with the two parameters a
user can quickly browse through several peak detec-
tion result candidates.

Once the pitch classes are identified, a pitch class
interval matrix can be constructed. This is the fourth
type of representation, which is shown in Table 1.
The pitch class interval matrix represents the found
pitch classes, and shows the intervals between the
pitch classes. In our example, a perfect fourth4, a
frequency ratio of 4/3 or 498 cent, is present between
pitch class 585 and 1083. This means that a perfect

fifth, a frequency ratio of 2/1
4/3 = 3/2 or 1200− 498 =

702 cent, is also present5.

4The perfect fourth and other musical intervals are here
used in their physical meaning. The physical perfect fourth is
sometimes called just fourth, or perfect fourth in just intona-
tion.

5See Appendix B to see how ratios translate to cent values.

P.C. 107 364 585 833 1083

107 0 256 478 726 976
364 944 0 221 470 719
585 722 979 0 248 498
833 474 730 952 0 250
1083 224 481 702 950 0

Table 1: Pitch classes (P.C.) and pitch class inter-
vals, both in cents. The same pentatonic Indonesian
slendro is used as in figure 6. A prefect fifth and its
dual, a perfect fourth, are marked by a bold font.

2.3 The interface

Most of the capabilities of Tarsos are used through
the graphical user interface (Figure 8). The interface
provides a way to explore pitch organization within a
musical piece. However, the main flow of the process,
as described above, is not always as straightforward
as the example might suggest. More particularly, in
many cases of music from oral traditions, the peaks in
the pitch class histogram are not always well-defined
(see Section 4). Therefore, the automated peak de-
tection may need manual inspection and further man-
ual fine-tuning in order to correctly identify a songs’
pitch organization. The user interface was designed
specifically for having a flexible environment where
all windows with representations communicate their
data. Tarsos has the attractive feature that all ac-
tions, like the filtering actions mentioned in Section
2.2, are updated for each window in real-time.

One way to closely inspect pitch distributions is to
select only a part of the estimations. In the block di-
agram of Figure 2, this is represented by the funnel.
Selection in time is possible using the waveform view
(Figure 8-5). For example, the aim could be a com-
parison of pitch distributions at the beginning and
the end of a piece, to reveal whether a choir lowered
or raised its pitch during a performance (see Section
4 for a more elaborate example).

Selection in pitch range is possible and can be com-
bined with a selection in time using the melograph
(Figure 8-3). One may select the melodic range such
as to exclude pitched percussion, and this could yield
a completely different pitch class histogram. This fea-
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Figure 8: A screenshot of Tarsos with 1 a pitch class histogram, 2 a pitch class interval table, 3 a melograph
with pitch estimations, 4 a midi keyboard and 5 a waveform.

ture is practical, for example when a flute melody is
accompanied with a low-pitched drum and when you
are only interested in flute tuning. With the melo-
graph it is also possible to zoom in on one or two
notes, which is interesting for studying pitch con-
tours. As mentioned earlier, not all music is orga-
nized by fixed pitch classes. An example of such pitch
organization is given in Figure 5b, a fragment of In-
dian music where the estimations contain information
that cannot be reduced to fixed pitch classes.

To allow efficient selection of estimations in the
time and frequency, they are stored in a kd-tree
(Bentley, 1975). Once such a selection of estimations
is made, a new pitch histogram is constructed and
the pitch class histogram view (Figure 8-1) changes
instantly.

Once a pitch class histogram is obtained, peak de-
tection is a logical next step. With the user inter-
face, manual adjustment of the automatically iden-
tified peaks is possible. New peak locations can be
added and existing ones can be moved or deleted. In

order to verify the pitch classes manually, it is pos-
sible to click anywhere on the pitch class histogram.
This sends a midi-message with a pitch bend to syn-
thesize a sound with a pitch that corresponds to the
clicked location. Changes made to the peak locations
propagate instantly throughout the interface.

The pitch class interval matrix (Figure 8-2) shows
all new pitch class intervals. Reference pitches are
added to the melograph and midi tuning messages are
sent (see Section 2.5). The pitch class interval ma-
trix is also interactive. When an interval is clicked on,
the two pitch classes that create the interval sound
at the same time. The dynamics of the process and
the combination of both visual and auditory clues
makes manually adjusted, precise peak extraction,
and therefore tone scale detection, possible. Finally,
the graphical display of a piano keyboard in Tarsos
allows us to play in the (new) scale. This feature can
be executed on a computer keyboard as well, where
notes are projected on keys. Any of the standard
midi instruments sounds can be chosen.
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It is possible to shift the pitch class histogram up-
or downwards. The data is then viewed as a repet-
itive, octave based, circular representation. In order
to compare scales, it is possible to upload a previ-
ously detected scale (see Section 2.5) and shift it, to
find a particular fit. This can be done by hand, ex-
ploring all possibilities of overlaying intervals, or the
best fit can be suggested by Tarsos.

2.4 Real-time capabilities

Tarsos is capable of real-time pitch analysis. Sound
from a microphone can be analyzed and immediate
feedback can be given on the played or sung pitch.
This feature offers some interesting new use-cases in
education, composition, and ethnomusicology.

For educational purposes, Tarsos can be used to
practice singing quarter tones. Not only the real time
audio is analyzed, but also an uploaded scale or pre-
viously analyzed file can be listened to by clicking on
the interval table or by using the keyboard. Singers
or string players could use this feature to improve
their intonation regardless of the scale they try to
reach.

For compositional purposes, Tarsos can be used to
experiment with microtonality. The peak detection
and manual adjustment of pitch histograms allows
the construction of any possible scale, with the possi-
bility of setting immediate harmonic and melodic au-
ditory feedback. Use of the interval table and the key-
board, make experiments in interval tension and scale
characteristics possible. Musicians can tune (ethnic)
instruments according to specific scales using the di-
rect feedback of the real-time analysis. Because of
the midi messages, it is also possible to play the key-
board in the same scale as the instruments at hand.

In ethnomusicology, Tarsos can be a practical
tool for direct pitch analysis of various instruments.
Given the fact that pitch analysis results show up im-
mediately, microphone positions during field record-
ings can be adjusted on the spot to optimize mea-
surements.

2.5 Output capabilities

Tarsos contains export capabilities for each step, from
the raw pitch estimations until the pitch class interval
matrix. The built-in functions can export the data
as comma separated text files, charts, TEX-files, and
there is a way to synthesize estimations. Since Tarsos
is scriptable there is also a possibility to add other ex-
port functions or modify the existing functions. The
api and scripting capabilities are documented on the
Tarsos website: http://tarsos.0110.be/tag/
JNMR.

For pitch class data, there is a special standardized
text file defined by the Scala6 program. The Scala
file format has the .scl extension. The Scala pro-
gram comes with a dataset of over 3900 scales rang-
ing from historical harpsichord temperaments over
ethnic scales to scales used in contemporary music.
Recently this dataset has been used to find the uni-
versal properties of scales (Honingh & Bod, 2011).
Since Tarsos can export scala files it is possible to see
if the star-convex structures discussed in Honingh &
Bod (2011) can be found in scales extracted from real
audio. Tarsos can also parse Scala files, so that com-
parison of theoretical scales with tuning practice is
possible. This feature is visualized by the upwards
Scala arrow in Figure 2. When a scale is overlaid
on a pitch class histogram, Tarsos finds the best fit
between the histogram and the scala file.

A completely different output modality is midi.
The midi Tuning Standard defines midi messages to
specify the tuning of midi synthesizers. Tarsos can
construct Bulk Tuning Dump-messages with pitch
class data to tune a synthesizer enabling the user to
play along with a song in tune. Tarsos contains the
Gervill synthesizer, one of the very few (software)
synthesizers that offer support for the midi Tuning
Standard. Another approach to enable users to play
in tune with an extracted scale is to send pitch bend
messages to the synthesizer when a key is pressed.
Pitch bend is a midi-message that tells how much
higher or lower a pitch needs to sound in comparison
with a standardized pitch. Virtually all synthesiz-
ers support pitch bend, but pitch bends operate on
midi-channel level. This makes it impossible to play

6See http://www.huygens-fokker.org/scala/
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polyphonic music in an arbitrary tone scale.

2.6 Scripting capabilities

Processing many audio files with the graphical user
interface quickly becomes tedious. Scripts written
for the Tarsos api can automate tasks and offer a
possibility to utilize Tarsos’ building blocks in en-
tirely new ways. Tarsos is written in Java, and is
extendable using scripts in any language that targets
the JVM (Java Virtual Machine) like JRuby, Scala7

and Groovy. For its concurrency support, concise
syntax and seamless interoperability with Java, the
Scala programming languages are used in example
scripts, although the concepts apply to scripts in any
language. The number of applications for the api is
only limited by the creativity of the developer using
it. Tasks that can be implemented using the Tarsos
api are for example:

Tone scale recognition: given a large number of songs
and a number of tone scales in which each song
can be brought, guess the tone scale used for
each song. In section 3.4 this task is explained
in detail and effectively implemented.

Modulation detection: this task tries to find the mo-
ments in a piece of music where the pitch class
histogram changes from one stable state to an-
other. For western music this could indicate a
change of mode, a modulation. This task is simi-
lar as the one described in Lesley Mearns (2011).
With the Tarsos api you can compare windowed
pitch histograms and detect modulation bound-
ries.

Evolutions in tone scale use: this task tries to find
evolutions in tone scale use in a large number
of songs from a certain region over a long pe-
riod of time. Are some pitch intervals becoming
more popular than others? In Moelants et al.
(2009) this is done for a set of African songs.

Acoustic Fingerprinting: it is theorized in Tzane-
takis et al. (2002) that pitch class histograms

7Please do not confuse the general purpose Scala program-
ming language with the tool to experiment with tunings, the
Scala program.

can serve as an acoustic fingerprint for a song.
With the building blocks of Tarsos: pitch detec-
tion, pitch class histogram creation and compar-
ison this was put to the test by Six & Cornelis
(2012).

The article by Tzanetakis et al. (2002) gives a good
overview of what can be done using pitch histograms
and, by extension, the Tarsos api. To conclude: the
Tarsos api enables developers to quickly test ideas,
execute experiments on large sets of music and lever-
age the features of Tarsos in new and creative ways.

3 Exploring Tarsos’ Capabili-
ties Through Case Studies

In what follows, we explore Tarsos’ capabilities using
case studies in non-Western music. The goal is to
focus on problematic issues such as the use of different
pitch extractors, music with pitch drift, and last but
not least, the analysis of large databases.

3.1 Analysing a Pitch Histogram

We will first consider the analysis of a song that was
recorded in 1954 by missionary Scohy-Stroobants in
Burundi. The song is performed by a singing soloist,
Léonard Ndengabaganizi. The recording was anal-
ysed with the YIN pitch detection method and a pitch
class histogram was calculated: it can be seen in Fig-
ure 9. After peak detection on this histogram, the
following pitch intervals were detected: 168, 318, 168,
210, and 336 cents. The detected peaks and all inter-
vals are shown in an interval matrix (see Figure 9). It
can be observed that this is a pentatonic division that
comprises small and large intervals, which is different
from an equal tempered or meantone division. Inter-
estingly, the two largest peaks define a fifth interval,
which is made of a pure minor third (318 cents) and
a pure major third (378 cents) that lies between the
intervals 168 + 210 = 378 cents). In addition, a mir-
rored set of intervals is present, based on 168-318-168
cents. This phenomena is also illustrated by Figure
9.
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Figure 9: This song uses an unequally divided pentatonic tone scale with mirrored intervals 168-318-168,
indicated on the pitch class histogram. Also indicated is a near perfect fifth consisting of a pure minor and
pure major third.

3.2 Different Pitch Extractors

However, Tarsos has the capability to use different
pitch extractors. Here we show the difference be-
tween seven pitch extractors on a histogram level.
A detailed evaluation of each algorithm cannot be
covered in this article but can be found in the cited
papers. The different pitch extractors are:

• YIN (Cheveigné & Hideki, 2002) (YIN) and the
McLeod Pitch Method (MPM), which is de-
scribed in (McLeod & Wyvill, 2005), are two
time-domain pitch extractors. Tarsos contains
a platform independent implementation of the
algorithms.

• Spectral Comb (SC), Schmitt trigger(Schmitt)
and Fast Harmonic Comb (FHC) are described
in Brossier (2006). They are available for Tarsos
through VAMP-plugins (Cannam, 2008);

• MAMI 1 and MAMI 6 are two versions of the
same pitch tracker. MAMI 1 only uses the most
present pitch at a certain time, MAMI 6 takes
the six most salient pitches at a certain time
into account. The pitch tracker is described in
Clarisse et al. (2002).

Figure 10 shows the pitch histogram of the same
song as in the previous section, which is sung by
an unaccompanied young man. The pitch histogram

shows a small tessitura and wide pitch classes. How-
ever, the general contour of the histogram is more or
less the same for each pitch extraction method, five
pitch classes can be distinguished in about one-and-
a-half octaves, ranging from 5083 to 6768 cent. Two
methods stand out. Firstly, MAMI 6 detects pitch in
the lower and higher regions. This is due to the fact
that MAMI 6 always gives six pitch estimations in
each measurement sample. In this monophonic song
this results in octave - halving and doubling - errors
and overtones. Secondly, the Schmitt method also
stands out because it detects pitch in regions where
other methods detect a lot less pitches, e.g. between
5935 and 6283 cent.

Figure 11 shows the pitch class histogram for the
same song as in Figure 10, now collapsed into one
octave. It clearly shows that it is hard to deter-
mine the exact location of each pitch class. How-
ever, all histogram contours look similar except for
the Schmitt method, which results in much less well
defined peaks. The following evaluation shows that
this is not only the case.

In order to be able to gain some insight into the dif-
ferences between the pitch class histograms resulting
from different pitch detection methods, the following
procedure was used: for each song in a data set of
more than 2800 songs - a random selection of the mu-
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Figure 10: Seven different pitch histograms of a traditional Rwandese song. Five pitch classes repeat every
octave. The Schmitt trigger (Schmitt) results in much less well defined peaks in the pitch histogram. MAMI
6 detects much more information to be found in the lower and higher regions, this is due to the fact that it
always gives six pitch estimations, even if they are octave errors or overtones.

0

100

200

300

400

500

600

283 450 768 955 1135

Pitch (cent)

N
u
m
be
r
of

es
ti
m
a
ti
on
s

YIN
MPM
SC
Schmitt
MAMI 6
MAMI 1
FHC

Figure 11: Seven different pitch class histograms of a traditional Rwandese song. Five pitch classes can be
distinguished but is clear that it is hard to determine the exact location of each pitch class. The Schmitt
trigger (Schmitt) results in a lot less well defined peaks in the pitch class histogram.
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YIN MPM Schmitt FHC SC MAMI 1 MAMI 6

YIN 1.00 0.81 0.41 0.65 0.62 0.69 0.61
MPM 0.81 1.00 0.43 0.67 0.64 0.71 0.63
Schmitt 0.41 0.43 1.00 0.47 0.53 0.42 0.56
FHC 0.65 0.67 0.47 1.00 0.79 0.67 0.66
SC 0.62 0.64 0.53 0.79 1.00 0.65 0.70
MAMI 1 0.69 0.71 0.42 0.67 0.65 1.00 0.68
MAMI 6 0.61 0.63 0.56 0.66 0.70 0.68 1.00

Average 0.69 0.70 0.55 0.70 0.70 0.69 0.69

Table 2: Similarity matrix showing the overlap of pitch class histograms for seven pitch detection methods.
The similarities are the mean of 2484 audio files. The last row shows the average of the overlap for a pitch
detection method.

sic collection of the Belgian Royal Museum of Central
Africa (RMCA) - seven pitch class histograms were
created by the pitch detection methods. The overlap -
a number between zero and one - between each pitch
class histogram pair was calculated. A sum of the
overlap between each pair was made and finally di-
vided by the number of songs. The resulting data can
be found in Table 2. Here histogram overlap or inter-
section is used as a distance measure because Gedik
& Bozkurt (2010) shows that this measure works best
for pitch class histogram retrieval tasks. The overlap
c(h1, h2) between two histograms h1 and h2 with K
classes is calculated with equation 2. For an overview
of alternative correlation measures between probabil-
ity density functions see Cha (2007).

c(h1, h2) =

∑K−1
k=0 min(h1(k), h2(k))

max(
∑K−1

k=0 h1(k),
∑K−1

k=0 h2(k))
(2)

The table 2 shows that there is, on average, a large
overlap of 81%, between the pitch class histograms
created by YIN and those by MPM. This can be ex-
plained by the fact that the two pitch extraction algo-
rithms are very much alike: both operate in the time-
domain with autocorrelation. The table also shows
that Schmitt generates rather unique pitch class his-
tograms. On average there is only 55% overlap with
the other pitch class histogram. This performance
was already expected during the analysis of one song
(above).

The choice for a particular pitch detection method
depends on the music and the analysis goals. The mu-
sic can be monophonic, homophonic or polyphonic,
different instrumentation and recording quality all
have influence on pitch estimators. Users of Tar-
sos are encouraged to try out which pitch detection
method suits their needs best. Tarsos’ scripting api -
see section 3.4 - can be helpful when optimizing com-
binations of pitch detection methods and parameters
for an experiment.

3.3 Shifted Pitch Distributions

Several difficulties in analysis and interpretation may
arise due to pitch shift effects during musical perfor-
mances. This is often the case with a capella choirs.
Figure 13 shows a nice example of an intentionally
raised pitch, during solo singing in the Scandinavian
Sami culture. The short and repeated melodic mo-
tive remains the same during the entire song, but the
pitch raises gradually ending up 900 cents higher than
the beginning. Retrieving a scale for the entire song is
in this case irrelevant, although the scale is significant
for the melodic motive. Figure 14 shows an example
where scale organization depends on the character-
istics of the instrument. This type of African fiddle,
the iningidi, does not use a soundboard to shorten the
strings. Instead the string is shortened by the fingers
that are in a (floating) position above the string: an
open string and three fingers give an tetratonic scale.
Figure 12 shows an iningidi being played. This use
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Figure 12: The iningidi, a type of African fiddle.
To play the instrument, the neck is held in the palm
of the left hand so that the string can be stopped
using the second phalanx of the index, middle and
ring fingers. Consequently, a total of four notes can
be produced.

case shows that pitch distributions for entire songs
can be misleading, in both cases it is much more in-
formative to compare the distribution from the first
part of the song with the last part. Then it becomes
clear how much pitch shifted and in what direction.

Interesting to remark is that these intervals have
more or less the same distance, a natural consequence
of the distance of the fingers, and that, consequently,
not the entire octave tessitura is used. In fact only
600 cents, half an octave, is used. A scale that oc-
curs typically in fiddle recordings, that rather can be
seen as a tetrachord. The open string (lowest note) is
much more stable than the three other pitches that
deviate more, as is shown by the broader peaks in
the pitch class histogram. The hand position with-
out soundboard is directly related to the variance of
these three pitch classes. When comparing the second
minute of the song with the seventh, one sees a clear
shift in pitch, which can be explained by the fact the
musician changed the hand position a little bit. In ad-
dition, another phenomena can be observed, namely,
that while performing, the open string gradually loses
tension, causing a small pitch lowering which can be
noticed when comparing the two fragments. This is
not uncommon for ethnic music instruments.

3.4 Tarsos’ Scripting applied to
Makam Recognition

In order to make the use of scripting more concrete,
an example is shown here. It concerns the analysis
of Turkish classical music. In an article by Gedik
& Bozkurt (2010), pitch histograms were used for -
amongst other tasks - makam8 recognition. The task
was to identify which of the nine makams is used in a
specific song. With the Tarsos api, a simplified, gen-
eralized implementation of this task was scripted in
the Scala programming language. The task is defined
as follows:

For a small set of tone scales T and a
large set of musical performances S, each
brought in one of the scales, identify the
tone scale t of each musical performance s
automatically.

Algorithm 1 Tone scale recognition algorithm

1: T ← constructTemplates()
2: S ← fetchSongList()
3: for all s ∈ S do . For all songs
4: O ← {} . Initialize empty hash
5: h← constructP itchClassHisto(s)
6: for all t ∈ T do . For all templates
7: o← calculateOverlap(t, h)
8: O[s]← o . Store overlap in hash
9: end for

10: i← getF irstOrderedByOverlap(O))
11: write s “is brought in tone scale” i
12: end for

An example of makam recognition can be seen in
Figure 15. A theoretical template - the dotted, red
line - is compared to a pitch class histogram - the
solid, blue line - by calculating the maximum overlap
between the two. Each template is compared with the
pitch class histogram, the template with maximum
overlap is the guessed makam. Pseudocode for this
procedure can be found in Algorithm 1.

8A makam defines rules for a composition or performance of
classical Turkish music. It specifies melodic shapes and pitch
intervals.
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Figure 13: An a capella song performed by Nils Hotti from the Sami culture shows the gradual intentional
pitch change during a song. The melodic motive however is constantly repeated (here shown twice).
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Figure 14: Histogram of an African fiddle song. The second minute of the song is represented by the dashed
line, the seventh minute is represented by the dotted line. The lowest, most stable pitch class is the result of
the open string. It lost some tension during the piece and started to sound lower. This is in sharp contrast
with the other pitch classes that sound higher, due to a change in hand position.
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Listing 1: Template construction

1 val makams = List( "hicaz","huseyni","huzzam","kurdili_hicazar",
"nihavend","rast","saba","segah","ussak")

var theoreticKDEs = Map[java.lang.String,KernelDensityEstimate]()
makams.foreach{ makam =>

6 val scalaFile = makam + ".scl"
val scalaObject = new ScalaFile(scalaFile);
val kde = HistogramFactory.createPichClassKDE(scalaObject,35)
kde.normalize
theoreticKDEs = theoreticKDEs + (makam -> kde)

11 }

Makam Pitch classes (in cents)

Hicaz 113 384 498 701 792 996
Huseyni 181 294 498 701 883 996
Huzzam 113 316 430 701 812 1109
Kurdili Hicazar 90 294 498 701 792 996
Nihavend 203 294 498 701 792 996
Rast 203 384 498 701 905 1086
Saba 181 294 407 701 792 996
Segah 113 316 498 701 815 1109
Ussak 181 294 498 701 792 996

Table 3: The nine makams used in the recognition task.
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Figure 15: The solid, blue line is a pitch class his-
togram of a Turkish song brought in the makam Hi-
caz. The dotted, red line represents a theoretical
template of that same Hicaz makam. Maximizing
the overlap between a theoretical and an actual pitch
class histogram suggests which makam is used.

To construct the tone-scale templates theoreti-
cal descriptions of those tone scales are needed, for
makams these can be found in Gedik & Bozkurt
(2010). The pitch classes are converted to cent
units and listed in Table 3. An implementation of
constructTemplates() in Algorithm 1 can be done as
in Listing 1. The capability of Tarsos to create theo-
retical tone scale templates using Gaussian kernels is
used, line 8. Line 7 shows how a scala file containing
a tone-scale description is used to create an object
with the same information, the height is normalized.

The calculateOverlap(t, h) method from line 7 in
Algorithm 1 is pitch invariant: it shifts the tem-
plate to achieve maximum overlap with respect to
the pitch class histogram. Listing 2 contains an im-
plementation of the matching step. First a list of
audio files is created by recursively iterating a direc-
tory and matching each file to a regular expression.
Next, starting from line 4, each audio file is processed.
The internal implementation of the YIN pitch detec-
tion algorithm is used on the audio file and a pitch
class histogram is created (line 6,7). On line 10, nor-
malization of the histogram is activated, to make the
correlation calculation meaningful. In line 11 to line
15 the created histogram from the audio file is com-

pared with the templates calculated beforehand (in
Listing 1). The results are stored, ordered and even-
tually printed on line 19.

The script ran on Bozkurts data set with Turkish
music: with this straightforward algorithm it is pos-
sible to correctly identify 39% of makams in a data
set of about 800 songs. The results for individual
makam recognition vary between 76% and 12% de-
pending on how distinguishable the makam is. If the
first three guesses are evaluated, the correct makam is
present in 75% of the cases. Obviously, there is room
for improvement by using more domain knowledge.
A large improvement can be made by taking into ac-
count the duration of each pitch class in each tem-
plate. Bozkurt does this by constructing templates
by using the audio itself. A detailed failure analysis
falls outside the scope of this article. It suffices to
say that practical tasks can be scripted successfully
using the Tarsos api.

4 Musicological aspects of Tar-
sos

Tarsos is a tool for the analysis of pitch distributions.
For that aim, Tarsos incorporates several pitch ex-
traction modules, has pitch distribution filters, audio
feedback tools, and scripting tools for batch process-
ing of large databases of musical audio. However,
pitch distributions can be considered from different
perspectives, such as ethnographical studies of scales
(Schneider, 2001), theoretical studies in scale anal-
ysis (Sethares, 2005), harmonic and tonal analysis
(Krumhansl & Shepard, 1979; Krumhansl, 1990), and
other structural analysis approaches to music (such as
set theoretical and Schenkerian). Clearly, Tarsos does
not offer a solution to all these different approaches
to pitch distributions. In fact, seen from the view-
point of Western music analysis, Tarsos is a rather
limited tool as it doesn’t offer harmonic analysis, nor
tonal analysis, nor even statistical analysis of pitch
distributions. All of this should be applied together
with Tarsos, when needed. Instead, what Tarsos pro-
vides is an intermediate level between pitch extrac-
tion (done by pitch extractor tools) and music theory.
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Listing 2: Makam Recognition

val directory = "/home/user/turkish_makams/"
val audio_pattern = ".*.(mp3|wav|ogg|flac)"
val audioFiles = FileUtils.glob(directory,audio_pattern,true).toList

4

audioFiles.foreach{ file =>
val audioFile = new AudioFile(file)
val detectorYin = PitchDetectionMode.TARSOS_YIN.getPitchDetector(audioFile)
val annotations = detectorYin.executePitchDetection()

9 val actualKDE = HistogramFactory.createPichClassKDE(annotations,15);
actualKDE.normalize
var resultList = List[Tuple2[java.lang.String,Double]]()
for ((name, theoreticKDE) <- theoreticKDEs){

val shift = actualKDE.shiftForOptimalCorrelation(theoreticKDE)
14 val currentCorrelation = actualKDE.correlation(theoreticKDE,shift)

resultList = (name -> currentCorrelation) :: resultList
}
//order by correlation
resultList = resultList.sortBy{_._2}.reverse

19 Console.println(file + " is brought in tone scale " + resultList(0)._1)
}

Makam Number of songs Correct guesses Percentage of correct guesses

Kurdili Hicazar 91 32 35.16%
Huseyni 64 8 12.50%
Nihavend 75 27 36.00%
Segah 111 43 38.74%
Saba 81 50 61.73%
Huzzam 62 15 24.19%
Rast 118 23 19.49%
Ussak 102 54 52.94%
Hicaz 68 52 76.47%
Total 772 304 39.69%

Table 4: Results of the makam recognition task, using theoretical intervals, on the Bozkurt data set with
Turkish music.
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The major contribution of Tarsos is that it offers an
easy to use tool for pitch distribution analysis that
applies to all kinds of music, including Western and
non-Western. The major contribution of Tarsos, so
to speak, is that it offers pitch distribution analysis
without imposing a music theory. In what follows,
we explain why such tools are needed and why they
are useful.

4.1 Tarsos and Western music theo-
retical concepts

Up to recently, musical pitch is often considered from
the viewpoint of a traditional music theory, which as-
sumes that pitch is stable (e.g. vibrato is an orna-
ment of a stable pitch), that pitch can be segmented
into tones, that pitches are based on octave equiv-
alence, and that octaves are divided into 12 equal-
sized intervals of each 100 cents, and so on. These
assumptions have the advantage that music can be
reduced to symbolic representations, a written nota-
tion, or notes, whose structures can be studied at an
abstract level. As such, music theory has conceptual-
ized pitch distributions as chords, keys, modes, sets,
using a symbolic notation.

So far so good, but tools based on these concepts
may not work for many nuances of Western music,
and especially not for non-Western music. In West-
ern music, tuning systems have a long history. Proof
of this can be found in tunings of historical organs,
and in tuning systems that have been explored by
composers in the 20th century (cf. Alois Haba, Harry
Partch, Ivo Darreg, and Lamonte Young). Especially
in non-Western classical music, pitch distributions
are used that radically differ from the Western the-
oretical concepts, both in terms of tuning, as well
as in pitch occurrence, and in timbre. For exam-
ple, the use of small intervals in Arab music con-
tributes to nuances in melodic expression. To better
understand how small pitch intervals contribute to
the organization of this music, we need tools that
do no assume octave divisions in 12 equal-sized in-
tervals (see Gedik & Bozkurt (2010)). Other types
of music do not have octave equivalence (cf. the In-
donesian gamalan), and also some music work with
modulated pitch. For example, Henbing & Leman

(2007) describe classical Chinese guqin music which
uses tones that contain sliding patterns (pitch mod-
ulations), which form a substantial component of the
tone and consider it as a succession of prototypical
gestures. Krishnaswamy (2004b,a) introduces a set
of 2D melodic units, melodic atoms, in describing
Carnatic (South-Indian classical) music. They rep-
resent or synthesize the melodic phrase and are not
bound by a scale type. Hence, tools based on West-
ern common music theoretical conceptions of pitch
organization may not work for this type of music.

Oral musical traditions (also called ethnic music)
provide a special case since there is no written mu-
sic theory underlying the pitch organization. An oral
culture depends on societal coherence, interpersonal
influence and individual musicality, and this has im-
plications on how pitch gets organized. Although oral
traditions often rely on a peculiar pitch organization,
often using a unique system of micro-tuned intervals,
it is also the case that instruments may lack a fixed
tuning, or that tunings may strongly differ from one
instrument to the other, or one region to the other.
Apparently, the myriad of ways in which people suc-
ceed in making sense out of different types of pitch
organization can be considered as cultural heritage
that necessitates a proper way of documentation and
study (Moelants et al., 2009; Cornelis et al., 2010).

Several studies attempt at developing a proper
approach to pitch distributions. Gómez & Bonada
(2008) look for pitch gestures in European folk music
as an additional aspect to pitch detection. Moving
from tone to scale research, Chordia & Rae (2007)
acknowledges interval differences in Indian classical
music, but reduces to a chromatic scale for simi-
larity analysis and classification techniques. Sund-
berg & Tjernlund (1969) developed, already in 1969,
an automated method for extracting pitch informa-
tion from monophonic audio for assembling the scale
of the spil̊apipa by frequency histograms. Bozkurt
(2008); Gedik & Bozkurt (2010) build a system to
classify and recognize Turkish maqams from audio
files using overall frequency histograms to character-
ize the maqams scales and to detect the tonic centre.
Maqams contain intervals of different sizes, often not
compatible with the chromatic scale, but partly re-
lying on smaller intervals. Moelants et al. (2007) fo-
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cuses on pitch distributions of especially African mu-
sic that deals with a large diversity of irregular tuning
systems. They avoid a priori pitch categories by using
a quasi-continuous rather than a discrete interval rep-
resentation. In Moelants et al. (2009) they show that
African songs have shifted more and more towards
Western well temperament from 1950s to 1980s.

To sum up, the study of pitch organization needs
tools that go beyond elementary concepts of the
Western music theoretical canon (such as octave
equivalence, stability of tones, equal temporal scale,
and so on). This is evident from the nuances of pitch
organization in Western music, in non-Western clas-
sical music, as well as in oral music cultures. Several
attempts have been undertaken, but we believe that a
proper way of achieving this is by means of a tool that
combines audio-based pitch extraction with a gener-
alized approach to pitch distribution analysis. Such
a tool should be able to automatically extract pitch
from musical audio in a culture-independent manner,
and it should offer an approach to the study of pitch
distributions and its relationship with tunings and
scales. The envisioned tool should be able to per-
form this kind of analysis in an automated way, but
it should be flexible enough to allow a musicologically
grounded manual fine-tuning using filters that define
the scope at which we look at distributions. The
latter is indeed needed in view of the large variabil-
ity of pitch organization in music all over the world.
Tarsos is an attempt at supplying such a tool. One
the one hand, Tarsos tries to avoid music theoretical
concepts that could contaminate music that doesn’t
subscribe the constraints of the Western music theo-
retical canon. On the other hand, the use of Tarsos
is likely to be too limited, as pitch distributions may
further draw upon melodic units that may require an
approach to segmentation (similar to the way seg-
mented pitch relates to notes in Western music) and
further gestural analysis (see the references to the
studies mentioned above).

4.2 Tarsos pitfalls

The case studies from section 3 illustrate some of the
capabilities of Tarsos as tool for the analysis of pitch
distributions. As shown Tarsos offers a graphical in-

terface that allows a flexible way to analyse pitch,
similar to other editors that focus on sound analy-
sis (Sonic Visualizer, Audacity, Praat). Tarsos offers
support for different pitch extractors, real-time anal-
ysis (see section 2.4), and has numerous output capa-
bilities (See section 2.5). The scripting facility allows
us to use of Tarsos’ building blocks in unique ways
efficiently.

However, Tarsos-based pitch analysis should be
handled with care. The following three recommenda-
tions may be taken into account: First of all, one can-
not extract scales without considering the music it-
self. Pitch classes that are not frequently used, won’t
show up clearly in a histogram and hence might be
missed. Also not all music uses distinct pitch classes:
the Chinese and Indian music traditions have been
mentioned in this case. Because of the physical char-
acteristics of the human voice, voices can glide be-
tween tones of a scale, which makes an accurate mea-
surement of pitch not straightforward. It is recom-
mended to zoom in on the estimations in the melo-
graph representation for a correct understanding.

Secondly, analysis of polyphonic recordings should
be handled with care since current pitch detection al-
gorithms are primarily geared towards monophonic
signals. Analysis of homophonic singing for example
may give incomplete results. It is advisable to try
out different pitch extractors on the same signal to
see if the results are trustworthy.

Finally, Schneider (2001) recognizes the use of
“pitch categories” but warns that, especially for com-
plex inharmonic sounds, a scale is more than a one
dimensional series of pitches and that spectral com-
ponents need to be taken into account to get better
insights in tuning and scales. Indeed, in recent years,
it became clear that the timbre of tones and the mu-
sical scales in which these tones are used, are some-
how related (Sethares, 2005). The spectral content
of pitch (i.e. the timbre) determines the perception
of consonant and dissonant pitch intervals, and there-
fore also the pitch scale, as the latter is a reflection of
the preferred melodic and harmonic combinations of
pitch. Based on the principle of minimal dissonance
in pitch intervals, it is possible to derive pitch scales
from spectral properties of the sounds and principles
of auditory interference (or critical bands). Schwartz
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& Purves (2004) argue that perception is based on
the disambiguation of action-relevant cues, and they
manage to show that the harmonic musical scale can
be derived from the way speech sounds relate to the
resonant properties of the vocal tract. Therefore, the
annotated scale as a result of the precise use of Tar-
sos, does not imply the assignment of any character-
istic of the music itself. It is up to the user to cor-
rectly interprete of a possible scale, a tonal center, or
a melodic development.

4.3 Tarsos - Future work

The present version of Tarsos is a first step towards
a tool for pitch distribution analysis. A number of
extensions are possible.

For example, given the tight connection between
timbre and scale, it would be nice to select a rep-
resentative tone from the music and transpose it to
the entire scale, using a phase vocoder. This sound
sample and its transpositions could then be used as a
sound font for the midi synthesizer. This would give
the scale a more natural feel compared to the general
midi device instruments that are currently present.

Another possible feature is tonic detection. Some
types of music have a well-defined tonic, e.g. in Turk-
ish classical music. It would make sense to use this
tonic as a reference pitch class. Pitch histograms and
pitch class histograms would then not use the refer-
ence frequency defined in appendix B but a better
suited, automatically detected reference: the tonic.
It would make the intervals and scale more intelligi-
ble.

Tools for comparing two or more scales may be
added. For example, by creating pitch class his-
tograms for a sliding window and comparing those
with each other, it should be possible to automat-
ically detect modulations. Using this technique, it
should also be possible to detect pitch drift in choral,
or other music.

Another research area is to extract features on a
large data set and use the pitch class histogram or in-
terval data as a basis for pattern recognition and clus-
ter analysis. With a time-stamped and geo-tagged
musical archive, it could be possible to detect ge-
ographical or chronological clusters of similar tone

scale use.
On the longer term, we plan to add representa-

tions of other musical parameters to Tarsos as well,
such as rhythmic and instrumental information, tem-
poral and timbral features. Our ultimate goal is to
develop an objective albeit partial view on music by
combining those three parameters within an easy to
use interface.

5 Conclusion

In this paper, we have presented Tarsos, a modular
software platform to extract and analyze pitch distri-
butions in music. The concept and main features of
Tarsos have been explained and some concrete exam-
ples have been given of its usage. Tarsos is a tool in
full development. Its main power is related to its in-
teractive features which, in the hands of a skilled mu-
sic researcher, can become a tool for exploring pitch
distributions in Western as well as non-Western mu-
sic.
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Appendix A Pitch Representa-
tion

Since different representations of pitch are used by
Tarsos and other pitch extractors this section con-
tains definitions of and remarks on different pitch and
pitch interval representations.

For humans the perceptual distance between 220Hz
and 440Hz is the same as between 440Hz and 880Hz.
A pitch representation that takes this logarithmic re-
lation into account is more practical for some pur-
poses. Luckily there are a few:

midi Note Number
The midi standard defines note numbers from
0 to 127, inclusive. Normally only integers are
used but any frequency f in Hz can be repre-
sented with a fractional note number n using
equation 3.

n = 69 + 12 log2(
f

440
) (3)

n = 12× log2(
f

r
) ; r =

440

2(69/12)
= 8.176Hz

(4)

Rewriting equation 3 to 4 shows that midi
note number 0 corresponds with a reference fre-
quency of 8.176Hz which is C−1 on a keyboard
with A4 tuned to 440Hz. It also shows that
the midi standard divides the octave in 12 equal
parts.

To convert a midi note number n to a frequency
f in Hz one of the following equations can be
used.

f = 440× 2(n−69)/12 (5)

f = r × 2(n/12) with r = 8.176Hz (6)

Using pitch represented as fractional midi note
numbers makes sense when working with midi
instruments and midi data. Although the midi
note numbering scheme seems oriented towards
western pitch organization (12 semitones) it is
conceptually equal to the cent unit which is
more widely used in ethnomusicology.
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Cent
Helmholtz & Ellis (1912) introduced the nowa-
days widely accepted cent unit. To convert a
frequency f in Hz to a cent value c relative to a
reference frequency r also in Hz.

c = 1200× log2(
f

r
) (7)

With the same reference frequency r equations 7
and 4 differ only by a constant factor of exactly
100. In an environment with pitch representa-
tions in midi note numbers and cent values it is
practical to use the standardized reference fre-
quency of 8.176Hz.

To convert a frequency f in Hz to a cent value
c relative to a reference frequency r also in Hz.

f = r × 2(c/1200) (8)

Savart & Millioctaves
Divide the octave in 301.5 and 1000 parts re-
spectively, which is the only difference with
cents.

A.1 Pitch Ratio Representation

Pitch ratios are essentially pitch intervals, an interval
of one octave, 1200 cents equal to a frequency ratio
of 2/1. To convert a ratio t to a value in cent c:

c =
1200 ln(t)

ln(2)
(9)

The natural logarithm, the logarithm base e with
e being Euler’s number, is noted as ln. To convert a
value in cent c to a ratio t:

t = e
c ln(2)
1200 (10)

Further discussion on cents as pitch ratios can be
be found in appendix B of Sethares (2005). There it
is noted that:

There are two reasons to prefer cents to
ratios: Where cents are added, ratios are
multiplied; and it is always obvious which

of two intervals is larger when both are ex-
pressed in cents. For instance, an inter-
val of a just fifth, followed by a just third
is (3/2)(5/4) = 15/8, a just seventh. In
cents, this is 702 + 386 = 1088. Is this
larger or smaller than the Pythagorean sev-
enth 243/128? Knowing that the latter is
1110 cents makes the comparison obvious.

A.2 Conclusion

The cent unit is mostly used for pitch interval repre-
sentation while the midi key and Hz units are used
mainly to represent absolute pitch. The main differ-
ence between cent and fractional midi note numbers
is the standardized reference frequency. In our soft-
ware platform Tarsos we use the exact same stan-
dardized reference frequency of 8.176Hz which en-
ables us to use cents to represent absolute pitch and it
makes conversion to midi note numbers trivial. Tar-
sos also uses cents to represent pitch intervals and
ratios.

Appendix B Audio material

Several audio files were used in this paper to
demonstrate how Tarsos works and to clarify musical
concepts. In this appendix you can find pointers to
these audio files.

The thirty second excerpt of the musical example
used throughout chapter 2 can be downloaded
on http://tarsos.0110.be/tag/JNMR and
is courtesy of: wergo/Schott Music & Media,
Mainz, Germany, www.wergo.de and Museum
Collection Berlin. Ladrang Kandamanyura (slendro
pathet manyura) is track eight on Lestari - The
Hood Collection, Early Field Recordings from Java -
SM 1712 2. It is recorded in 1957 and 1958 in Java.

The yoiking singer of Figure 13 can be found on a
production released on the label Caprice Records in
the series of Musica Sveciae Folk Music in Sweden.
The album is called Jojk CAP 21544 CD 3, Track
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No 38 Nila, hans svager/His brother-in-law Nila.

The api example (section 3.4) was executed on
the data set by Bozkurt. This data set was also
used in (Gedik & Bozkurt, 2010). The Turkisch song
brought in the makam Hicaz from Figure 15 is also
one of the songs in the data set.

For the comparison of different pitch trackers on
pitch class histogram level (section 3.2) a subset of
the music collection of the Royal Museum for Central
Africa (RMCA, Tervuren, Belgium) was used. We
are grateful to the RMCA for providing access to
its unique archive of Central African music. A song
from the RMCA collection was also used in section
3.1. It has the tape number MR.1954.1.18-4 and was
recorded in 1954 by missionary Scohy-Stroobants in
Burundi. The song is performed by a singing soloist,
Léonard Ndengabaganizi. Finally the song with tape
number MR.1973.9.41-4, also from the collection of
the RMCA, was used to show pitch shift within a
song (Figure 14). It is called Kana nakunze and is
recorded by Jos Gansemans in Mwendo, Rwanda in
the year 1973.
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