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ABSTRACT

Audio Fingerprinting (AFP) is a well-studied problem
in music information retrieval for various use-cases e.g.
content-based copy detection, DJ-set monitoring, and mu-
sic excerpt identification. However, AFP for continuous
broadcast monitoring (e.g. for TV & Radio), where music
is often in the background, has not received much attention
despite its importance to the music industry. In this paper
(1) we present BAF, the first public dataset for music mon-
itoring in broadcast. It contains 74 hours of production
music from Epidemic Sound and 57 hours of TV audio
recordings. Furthermore, BAF provides cross-annotations
with exact matching timestamps between Epidemic tracks
and TV recordings. Approximately, 80% of the total anno-
tated time is background music. (2) We benchmark BAF
with public state-of-the-art AFP systems, together with our
proposed baseline PeakFP: a simple, non-scalable AFP al-
gorithm based on spectral peak matching. In this bench-
mark, none of the algorithms obtain a F1-score above 47%,
pointing out that further research is needed to reach the
AFP performance levels in other studied use cases. The
dataset, baseline, and benchmark framework are open and
available for research.

1. INTRODUCTION

Audio Fingerprinting (AFP) is the information retrieval
task of identifying audio recordings in a given database of
reference songs. The task is based on extracting content-
based signatures that summarize an audio recording (ex-
traction) [1], storing them in a database or in hash tables
(indexing), and efficiently linking short snippets of unla-
beled audio to the same content in the database (matching).

AFP has been successfully applied to different tasks
such as query by example [2], advertisement tracking [3],
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integrity verification [4], and data deduplication [5]. A rel-
evant AFP application is broadcast monitoring for its cru-
cial role in royalties distribution. In 2021, US$ 2.9 bil-
lion were distributed among rights holders [6], represent-
ing 11.5% of the global recorded music industry revenues.

A great AFP system for broadcast monitoring must pro-
vide exact start and end timestamps within long audio
recordings. It also must be robust against common distor-
tions in broadcasting like music being in the background
and with low SNR. To the best of our knowledge, the lit-
erature has not addressed the AFP use case of broadcast-
ing monitoring with a heavy presence of background mu-
sic. In this scenario, music may have a very low Signal-
to-Noise ratio (SNR) that makes it difficult to identify [7].
Moreover, music may be masked by a large variety of non-
musical sounds, such as speech, applause, laughter, urban
and nature sounds, etc. [8].

To promote research in AFP for broadcast monitor-
ing we propose BAF: a Broadcast Audio Fingerprinting
dataset with TV recordings in which production music is
played. The references are part of Epidemic Sound’s pri-
vate catalog [9], a collection of music for content creators
(production music). BAF reflects a challenging (but real-
istic) scenario [7] for broadcast AFP systems: low sample
rate monaural audio, background music of variable SNR,
a large variety of contexts, long queries with true negative
sections, and matches of multiple durations. More details
about the dataset can be found in Section §3.

In order to show the challenges that BAF presents, in
Section §4 we present a benchmark with 4 of the avail-
able AFP algorithms: Audfprint [10], Panako [11, 12],
Olaf [13], and NeuralFP [14]. These are open-source im-
plementations that represent different approaches to AFP.
In addition, we propose an open implementation of a sim-
ple baseline based on spectral peak matching and the eval-
uation framework used in the benchmark.

2. RELATED DATASETS

In this section, we present public datasets that have been
used in the AFP literature. We also gather information
about the contents of private datasets and depict them in
Table 1. We include information about the queries, refer-
ences, and the goal of the dataset or publication. We have
found in the literature 21 datasets that have been used for



Work (Synthetic) Queries References Goal Used in

2002 Haitsma, J. [15] (✓) 4 excerpts 20,000 Scalable, robust to noise
2003 Wang, A. [2] 250 excerpts 10,000 Scalable, robust to noise
2005 Bartsch, M.A. [16] 93 93 Structural redundancy
2008 Baluja, S. [17] (✓) 1,000 10,000 Robust to pitch and time
2008 Bellettini, C. [18, 19] (✓) 15,000 15,000 Robust to pitch
2011 Fenet, S. [20] 7d radio broad. 7,309 (60s) Scalable, robust to pitch
2011 Fenet, S. [20] 5d radio broad. 30,000 Scalable, robust to pitch
2014 Malekesmaeili, M. [21] (✓) 200 200 Robust to noise, pitch and time
2015 Zhang, X. [22] (✓) 10s excerpts 2,075 Robust to pitch and time
2016 Sonnleitner, R. [23] (✓) 300 20,000 Robust to noise, pitch and time
2016 Sonnleitner, R [24] 8 DJ-mixes 296 ≈ 7h Robust to pitch and time
2016 Walter, T. [25] 10s excerpts 10M Efficient and scalable AFP
2017 Gfeller, B. [26] 12,000 excerpts 450h Low-power music recognizer
2020 Son H.-S. [27] (✓) 100 100 Robust to pitch
2020 Yu, Z. [28] (✓) 5,000 (10s) 345,000 Robust to any degradation

2009 MagnaTagATune [29] 25,863 ≈ 208h Music Tagging [30]
2006 TRECVID [31, 32] (✓) 201 11,200 ≈ 400h Content-based Copy Detection [33–35]
2014 Panako [11] (✓) 600 excerpts 30,000 ≈ 277h Robust to pitch and time [11]
2016 Mixotic [24] 10 DJ-mixes 723 ≈ 11h Robust to pitch and time [24]
2016 QuadFP [23] (✓) 450,000 100,011 ≈ 6,899h Robust to pitch and time [23]
2021 NeuralFP [14] (✓) short excerpts 100k ≈ 8,000h High-specific audio retrieval [14]

Table 1. Private (top ↑) and public (bottom ↓) datasets that have been used for AFP. For each dataset information about
the queries, references and the goal of the original work is given. Synthetic (✓) queries have been created by applying
transformations to reference audios. We also indicate if the queries are excerpts and the number of original audio pieces
that have been transformed, not meaning the total number of queries after the transformation.

AFP. Even though the nature of the data varies from each
dataset, most of them rely on the same principle: a pri-
vate collection of tracks that constitute a reference set and
a query set formed by applying transformations to some
of the references. This is a good way to test the limits of
the robustness to degradations like pitch-shifting or time-
scaling. Still, it does not target the characteristics of real-
istic broadcast monitoring, where the music is in the back-
ground, masked by speech and a wide variety of sounds
and noises (See Section §3.3.1 for a detailed analysis).

As Table 1 reflects, only 6 out of the 21 datasets are
public, mainly due to the difficulty of legally publishing
copyrighted music. In other cases, data remains private
to protect intellectual property, as with private companies.
To that extent, private datasets hinder reproducibility and
slow-down scientific progress in AFP research. Of all pri-
vate datasets, only the ones built by Fenet et al. [20] re-
flect the use case of broadcast monitoring: they use real
radio broadcasted emissions as queries and a reference set
of 459 songs. Moreover, only Fenet’s [20], Sonnleitner et
al., [24] and Walter and Gould [25] used unknown audios
as queries. All other works used a version of the refer-
ence songs often modified with some degradation: echo,
pitch and/or tempo alteration, reverb, etc. Besides these
private datasets, there are some other public datasets that
have been used in AFP works, even though none of them
fits the broadcast monitoring task.

MagnaTagATune [29] is a public dataset created for
Music Tagging. Each audio clip has associated a vector

of binary annotations of 188 tags that describe the mu-
sic piece. The dataset was used for AFP by Ramona and
Peeters [30] in which they followed the experimental pro-
tocol of Haitsma and Kalker [15] applying a series of dis-
tortions like Amplitude dynamic compression, MP3 en-
coding, time-shifting, or equalization to 500 music clips
from MagnaTagATune.

NIST-TRECVID [31, 32]. One of the tasks the TREC
Video Retrieval Evaluation (TRECVID) proposed until
2011 was Content-Based Copy Detection (CCD) [36]. Var-
ious works [33–35] used the dataset provided with the task
to evaluate AFP algorithms. The length of queries varies
from 3 to 180 seconds and compromises multiple trans-
formed fragments from 201 unique audio recordings.

Mixotic [24] was created by Sonnleitner et al. to test the
robustness of QuadFP, Panako, and Audfprint in real DJ
mixes. It was generated from free, CC-licensed DJ mixes
that were published on mixotic netlabel.

Panako [11], QuadFP [23, 37] and NeuralFP [14]
present public datasets that were curated to test their al-
gorithms. Since these datasets are reproducible we list
them as public AFP datasets, but in the case of Panako
and QuadFP they share a script that downloads tracks from
Jamendo instead of the audio files. It can happen that some
audio works are not available anymore thus impeding the
reconstruction of the dataset. NeuralFP shares the audio
files since they come from the FMA dataset [38]. It was
trained on 10k FMA songs and tested on a larger set of
100k songs (≈ 8,000 hours).



3. BAF DATASET

This section describes the characteristics of BAF: Broad-
cast Audio Fingerprinting dataset. It is the only available
dataset designed for broadcast monitoring. BAF contains
TV recordings, reference tracks, and annotations done by 6
different annotators that cross-annotated matching queries
and references. It is a self-contained dataset available upon
user’s access request. Open for non-commercial, research-
only, with no adaptations or derivative works allowed and
proper attribution. It must not be used for music genera-
tion or music synthesis research. Towards addressing eth-
ical and sustainability concerns, we distribute a datasheet
using the format proposed by Gebru et al. [39] with practi-
cal and detailed information about the dataset. Audio files,
annotations, and the dataset datasheet are hosted in Zen-
odo 1 while the baseline code and evaluation scripts are in
Github 2 .

3.1 Methodology

The reference set contains 2,000 production music tracks
(74 hours of audio) obtained directly from the Epidemic
Sound [9] private catalog, described in Section 3.3.2. The
queries are initially derived from TV stream monitoring
on 478 TV channels from 43 countries, for a 2.5 months
period at stereo maximum quality. We extract the audio
with FFMPEG and we split the large audio files into 1-
minute length queries.

As an automatic pre-annotation stage, we match queries
with references relying on a proprietary stereo matching
algorithm developed by BMAT. The algorithm is non-
scalable and it relies on spectral peaks matching using
stereo signals. It has been tailored to avoid false nega-
tives, disregarding the presence of false positives and low
computational efficiency. We then select all query seg-
ments that have at least one pre-annotation match. In ad-
dition, we discard queries matching more than 3 unique
references since most of them contain false positives,
which would be manually deleted during the later anno-
tation process. Then, we shuffle all queries and select
3,425 of them, corresponding to 57 hours of TV broad-
cast audio from 203 TV channels across 23 countries. Fi-
nally, we convert all audios to publishing format: 8kHz
mono, WAV pcm_s16le, a common specification in AFP
[2, 14, 15, 34].

3.2 Annotation criteria

BAF has been annotated by six different annotators in a
controlled environment. We built an in-house annotation
web app in Django, secured by user credentials, in order to
facilitate the annotation to remote users. The app displays
all segments resulting from the automatic pre-annotation
stage. Annotators were instructed to listen to the query
and reference pairs, filter out false positives, and adjust the
start and end times of the true positives with deciseconds
precision. Queries with slight alterations with respect to

1 https://doi.org/10.5281/zenodo.6868083
2 https://github.com/guillemcortes/baf-dataset
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Figure 1. YAMNet classification of BAF queries. YAM-
Net uses a sliding window of length 0.96s and stride of
0.48s to generate one prediction for each step. Percentages
are relative to each top classification.

the reference have also been annotated as true positives,
such as versions with some missing stem (e.g. instrumental
vs vocal), or ’edit’ versions.

We ensured that each segment was annotated by three
different annotators (sets of annotators created by random
combination). We then created the cross-annotations with
3 different levels of agreement: single, majority, unanim-
ity. These cross-annotations are the result of splitting anno-
tations into segments and merging overlapping segments,
assigning a tag depending on how many annotators marked
a match in that time interval (1, 2, and all 3, respectively).
Out of the 57 hours of queries, over 37 hours were marked
as true positive by at least 1 annotator.

3.3 Analysis

3.3.1 Queries

We have used the YAMNet sound event classifier [40] to
study the most common sounds of BAF queries. YAMNet
is a pretrained deep network that predicts 521 audio event
classes based on the AudioSet-YouTube corpus [41]. Au-
dioset ontology follows a tree structure so all classes are
gathered under 7 different parent classes [42], from that,
we extract Speech from Human as a separate class to bet-
ter evaluate its presence. Figure 1 reflects that YAMNet’s
most predominant class is Speech, with 73% of the output
predictions while only nearly 25% of them correspond to
Music. Regarding the top5rest classes, Environment and
Music are the most predominant, which means that noises
and background music are common in the broadcast.

To obtain the YAMNet distributions we first run YAM-
Net for all queries and then select the outputs correspond-
ing to the annotated segments. After that, we average
the scores using a moving average window of length 2
to soften noisy scores. Lastly, we extract the top1 and
top5 distributions and translate all labels to the correspond-
ing parent class, following Audioset ontology. For each
window, we remove from the top5 the parent class that
matches that window’s top1 parent class so with this, only
the classes that are detected in the background remain. We
name this distribution top5rest.
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Figure 2. BAF references music genres. Only genres rep-
resenting more than 1% are listed, the remainder represents
3% of the dataset.

In addition YAMNet predictions we used the MIREX
2019 Music Detection winner model [43, 44] to analyze
BAF queries. The system is based on computing the
Relative Music Loudness distribution [45] and classifies
as Foreground Music only 18.07% of the total cross-
annotated segments with the tag unanimity (segments all
annotators agreed that there’s music). Verifying the high
presence of background music.

3.3.2 References

The BAF reference set is a selection of production music
tracks from Epidemic Sound’s private catalog of 35,000+
human-annotated tracks. In order to give valuable insights
about instrumentalization, BPM, or genre, we have ana-
lyzed the tags and found that 7% of the selected tracks con-
tain vocal elements like singing, while the remaining 93%
are instrument-only versions. Figure 2 shows how the ma-
jority of the references are categorized as Film music, and
cover styles/moods like Suspense, Drama, Build, Pulses,
Small Emotions, or Solo Piano. Common keywords or tags
found in this set of tracks include: comedic, piano, strings,
driving, tension, corporate, guitar, and documentary. The
references BPMs follow a Normal Distribution N (µ, σ2)
with mean µ = 109 and standard deviation σ = 33.

3.3.3 Matches / Annotations

Table 2 shows that 90.41% of the total annotated time
(133,846 seconds) has been agreed by unanimity. Most of
the differences between annotators come from divergences
in start and end matching timestamps partially due to the
difficulty to tell when a song starts or ends in a stream,
especially with background music.
Additionally, to evaluate the reliability of annotators’
agreement we compute the Fleiss’ Kappa [46] indicator, a
statistical measure of inter-rater reliability. It needs fixed-
length elements to categorize them so we computed the
Fleiss’ Kappa indicator using 0.05 seconds length annota-
tions. We obtained a factor of 0.9364 that can be inter-
preted as an almost perfect agreement [47].

3.4 Limitations

The size of the reference set is not large enough to mimic
real production environments, where recordings are ex-
pected to be analyzed against tens of millions of tracks
[25]. For future work, in order to study thoroughly the
impact of False Positives (FP), a set of additional noise
tracks should be added to the reference set. For this, public
datasets mentioned in Section §2 could be used.

4. BENCHMARK

We benchmark the following available AFP algorithms:
Audfprint [10], Panako [11, 12], Olaf [13], and NeuralFP
[14] to study the performance of AFP in the broadcast
monitoring use case. Additionally, we also propose a sim-
ple baseline that gives context to the results.

Audfprint is based on Shazam’s algorithm [2]. It uses
the locations of pairs of spectrogram peaks (local max-
ima points) as robust features for matching. Panako ex-
tends Shazam fingerprint by saving triplets of local max-
ima points in Constant-Q non-stationary Gabor transform.
It uses time ratios to form a time-scale invariant finger-
print component. These components are hashed alongside
a coarse value of the frequency position of the triplet, mak-
ing it robust to time-scale and pitch modifications. Olaf is
a lightweight AFP algorithm able to run in embedded sys-
tems. In the benchmarked version, it uses absolute exact
frequencies and timestamps in the hash (like Shazam [2])
of triplets of peaks (like Panako [11]). It is not robust to
pitch shifting or time distortions. NeuralFP is based on
deep neural networks and created for high-specific audio
retrieval using contrastive learning. It creates pairs of data
applying distortions to short audio snippets so each batch
of training data consists of randomly selected original sam-
ples and their augmented replicas. Then, it maximizes the
inner product between pairs.

All algorithms except NeuralFP ran as they are pub-
lished. NeuralFP, though, required changes in the index-
ing and matching modules to match the broadcast moni-
toring use case. The indexer now stores indexes on disk
rather than on a memory map, and the matcher integrates
the Maximum Inner Product Search used by the authors
into PeakFP matcher pipeline, to be able to give start and
end times of each match. The implementation 3 has been

3 https://github.com/guillemcortes/
neural-audio-fp

Class %

single 3.69%
majority 5.90%
unanimity 90.41%

Table 2. Annotators agreement in percentage of annota-
tion time length. single correspond to intervals where only
1 of the 3 annotators marked a match. In majority 2/3 an-
notators agreed while in unanimity there’s full agreement.



validated by NeuralFP authors. Towards a fair comparison
between systems, all algorithms return top1 matches. Auf-
print and Olaf use the default configurations, Panako pa-
rameters are adjusted for 8kHz input signal and NeuralFP
needs extra parameters for the custom matcher pipeline.
Additionally, we study the impact of fingerprint density by
increasing Audfprint (x2) and Panako (x1.5) peak density
and also test two additional NeuralFP models spcm1510
and spc3000 that were trained with different levels of
speech intensity [-15, 10] dB and [0, 10] dB, respectively.
All configuration parameters used in this publication have
been discussed with the authors of each respective algo-
rithm and are available in the publication git repository.

Apart from the algorithms mentioned above, there are
some others that we would have liked to benchmark, but
no official public implementation of them was found. That
is Fenet’s et al. CQT approach [20], Google’s Now Playing
[26] lightweight, neural network-based, continuous moni-
toring system, and also Son’s et al. FFMAP-based algo-
rithm [27,48]. For QuadFP [23,49] and Waveprint [17] we
tried to run third-party implementations but without suc-
cess. We also plan to include Chromaprint [50], a pub-
lic AFP implementation based on Ke et al. computer vi-
sion approach for music identification [51], and other al-
gorithms to the benchmark.

4.1 Baseline: PeakFP

Available AFP systems aim at obtaining the best algorithm
in terms of robustness, scalability, efficiency, etc. How-
ever, many existing systems are distributed as closed soft-
ware packages or embedded into complicated frameworks
which are difficult to adapt. Also, the literature lacks a
simple and easy-to-use baseline that may be used as a start-
ing point in AFP research. We address these issues by in-
troducing PeakFP, a simple, open, non-data-driven, non-
scalable, AFP algorithm based on spectral peak matching
that it has been designed to be as simple as possible and
not optimized for scalability, but at the same time, useful
for detecting background music. While algorithms com-
monly use pairs or triplets of spectral peaks, PeakFP uses
single-peak matching because pairs of spectral peaks are
more prone to break when the SNR of the music signal
is low due to music peaks being masked by other sounds.
As a consequence, PeakFP is ineffective in front of pitch-
shifting or time-scaling distortions.

PeakFP is divided into three modules: extractor, in-
dexer, and matcher. They are designed to work indepen-
dently following a simple pipeline we detail below. Note
that the code of our implementation is available online (see
Section 3). The extraction process involves finding peaks
in a monaural audio magnitude spectrogram using a 2D
max filter. Then, all the peaks (time-frequency tuples) are
sorted by the time frame index and saved in a serialized
binary file. The reference signature files are used to gen-
erate an inverted index on the peak frequency values. For
a given frequency, the index contains the list of all occur-
rences of that frequency in every reference. The hash space
comprises all the possible frequency values. This small

Figure 3. Proposed metric Match ratio. It defines the ratio
between the number of identifications with respect to the
number of annotations in the groundtruth.

hash space translates to a high quantity of hash matches
that yield a high number of comparisons in the matching
step. The matcher splits the peaks of the query recordings
using a sliding temporal window defined by window length
and hop size. Then, for all windows, it counts the common
peaks for a specific query-reference time alignment sim-
ilarly to Shazam [2]. After that, all matches go through
a postprocessing stage in order to consolidate and resolve
overlapping matches.

4.2 Evaluation Metrics

A variety of metrics are used in the AFP literature
for benchmarking and comparing algorithms, most of
them based on classifying predictions into false posi-
tives/negatives or true labels [52], and using metrics de-
rived from information retrieval such as true positive rate
[11] precision, recall, and specificity [2, 23]. Other papers
use Top-1 Hit Rate [14] or TRECVID’s proposed eval-
uation metric Normalized Detection Cost Rate (NDCR)
[33–35].

In broadcast monitoring, it is typically required to pro-
vide exact start and end matching timestamps for each ref-
erence identification. For this reason, we propose to use the
percentage of identified seconds alongside to match classi-
fication into Precision, Recall, and F1-score.

Some algorithms are prone to give short overly-split
matches, while others tend to generate longer matches
that include gaps without annotations. Towards quanti-
fying this we introduce a new metric Match Ratio, de-
fined in equation 1 and depicted in Figure 3, that repre-
sents the ratio between the total correct identified segments
(TP matches), and the total unique annotations identified,
groundtruth (GT) segments.

Match Ratio =
# TP segments ID
# TP segments GT

(1)

A Match Ratio value bigger than 1 means that some of
the identifications belong to the same annotation. Con-
versely, a value lower than 1 indicates that the algorithm
generates a single identification for a segment in which
there is more than one unique identification according to
the groundtruth. The value for an algorithm that perfectly
matches the annotations is 1.



Algorithm Match Ratio
# matches seconds identified

Precision Recall F1-score Precision Recall F1-score

PeakFP 1.64 .96 .70 .81 .96 .32 .47
Panako2.0 1.85 .98 .33 .49 .98 .06 .12
Panako2.0 (x1.5) 2.12 .70 .60 .64 .69 .15 .25
Olaf 1.95 .98 .25 .39 .98 .06 .11
NeuralFP 1.39 .22 .30 .25 .37 .10 .15
NeuralFP-spcm1510 1.56 .23 .56 .33 .38 .22 .28
NeuralFP-spc3000 1.40 .69 .38 .49 .83 .13 .22
Audfprint N/A* .76 .05 .10 .86 .02 .04
Audfprint (x2) N/A* .71 .10 .17 .81 .04 .08

Table 3. Benchmark results on unanimity annotations. *Audfprint reports 1 match per query by default.

4.3 Results

Table 3 summarizes the performance of all benchmarked
algorithms on unanimity annotations. All systems increase
their Precision when considering the identified seconds be-
cause the False Positives identifications are shorter than the
True Positives. At the same time, Recall decreases because
the identifications are partial and do not cover the full an-
notation groundtruth. Hence the importance of studying
also the performance in terms of identified seconds.

All algorithms except Audfprint obtain a Match Ra-
tio > 1. This is caused because algorithms tend to detect
small excerpts of the music (parts where the music SNR is
higher) resulting in more than one identification per anno-
tation. Audfprint only returns one identification per query
by default, so its Match Ratio will always be 1 with this
configuration. This also means that if a query has more
than one annotation, Audfprint can’t identify all of them.

The good Precision results (PeakFP, Panako, Olaf ob-
tain over 0.96) should be analyzed taking into account that
BAF is not challenging to False Positives since the refer-
ence set is limited to 2,000 references. The low Recall
values show that there are a lot of identifications missed
(False Negatives), manifesting that algorithms do not work
well with background music or broadcast distortions. In-
creasing fingerprint density improves the F1-score a bit. It
helps to boost the Recall in both Panako (x1.5) and Audf-
print (x2) but at expense of Precision.

Additionally, to frame the computational cost of each
algorithm, we have benchmarked their extraction, index-
ing, and matching times as well as index size. Table 4
shows that Olaf is the fastest benchmarked system. On the

Algorithm
Extraction &

Matching Index size
Indexing

Olaf 53m 3h 30m 349 MB
Panako 2.0 2h 17m 5h 24m 273 MB
NeuralFP 49h 34m 9h 30m 37 MB
Audfprint 9h 50m 23h 01m 19 MB
PeakFP 50m 98h 39m 160 MB

Table 4. Computational cost benchmark.

other hand, PeakFP is the slowest even though the extrac-
tion process is quick due to its simplicity, but the reduced
hash space yields a high collision of hashes that slows
down the matching. NeuralFP extraction process takes a
lot of time compared to others, mainly due to the deep neu-
ral network model complexity. This process can be sped up
by running it on a GPU, where deep learning models op-
erate more efficiently. For both Panako and Audfprint, the
matching step takes x2.5 times longer than the extraction.

Regarding the index sizes, Audfprint and NeuralFP gen-
erate the smallest indexes (19MB and 37 MB) to represent
a set of 2,000 references (74 hours of audio). Olaf gen-
erates the biggest index with almost 350 MB, 18 times
the size of the Audfprint index. Olaf would take around
1.75 TB for an industrial database of 10 million references
while Audfprint would take 95 GB.

Experiments have been run in a reproduceable, isolated
environment. All audios have been loaded on the RAM
disk and ran on a 98GB RAM server with two 16-cores
CPUs at 2.60GHz. We have executed each algorithm with
multiprocessing (when it was possible) and cleared the
cache before each run. The results in Table 4 are normal-
ized to one single thread.

5. CONCLUSIONS AND FUTURE WORK

We present a new dataset for broadcast monitoring with 57
hours of TV broadcast recordings, 74 hours of production
music, and over 37 hours of human cross-annotations. All
audios are monaural sampled at 8kHz and more than 80%
of the annotated music is in the background. The Bench-
mark of state-of-the-art public algorithms shows that AFP
for broadcast monitoring with a high presence of back-
ground music is yet to be solved. For this task, in addition
to other metrics used in the literature, we propose using
the Match Ratio and analyzing Precision, Recall, and F1-
score not only for numbers of matches but also for seconds
identified. We also provide a simple AFP baseline.

In future experiments, we plan to add noise tracks to
the references set to study the evolution of False Positives
and the scalability of each algorithm. We will get more in-
sight into their behavior for different levels of background
music, and we will benchmark more AFP algorithms.
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