
Olaf: a lightweight, portable audio search system
Joren Six 1

1 IPEM, Ghent University, Belgium
DOI: 10.21105/joss.05459

Software
• Review
• Repository
• Archive

Editor: Brian McFee
Reviewers:

• @liscio
• @ebezzam

Submitted: 13 March 2023
Published: 03 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Olaf stands for Overly Lightweight Acoustic Fingerprinting and solves the problem of finding
short audio fragments in large digital audio archives. The content-based audio search algorithm
implemented in Olaf can identify a short audio query in a large database of thousands of hours
of audio using an acoustic fingerprinting technique.

The dataflow in Olaf closely resembles the flow depicted in Figure 1. Audio is transformed to
features, which are grouped in recognizable fingerprints. The fingerprints are compared with
a database of reference fingerprints. If a match is found, it is reported or, in case of a true
negative, the system reports that the audio is not present in the database. The properties of
the acoustic fingerprinting system mainly depend on the selection of features, the information
captured by the fingerprints, and the performance of the matching step.

Figure 1: A general acoustic fingerprinting system. Features are extracted from audio and combined into
fingerprints. The fingerprints are matched with fingerprints in a reference database. Finally, a match is
reported.

The fingerprints of Olaf are based on peaks in a spectral representation of audio, an audio
feature which has been proven to be a good candidate for audio matching (Six, 2020, 2022;
Six & Leman, 2014; Avery L. Wang, 2003; A. Li-chun Wang & Culbert, 2003). Olaf combines
either two or three spectral peaks into a fingerprint. Two-peak fingerprints allow matching
shorter queries and improves matching noisy queries. The limited information in two peaks
becomes a problem if the reference dataset becomes larger and false positive matches –
fingerprint hash collisions – become more common. Three-peak fingerprints contain more bits
of information, which makes false positives much less common. Matches become more reliable
but shorter, or more distorted queries, might be missed. Three-peak fingerprints work well for
longer or ‘cleaner’ queries in combination with larger reference datasets.

Statement of need
Audio search algorithms have been described for decades (Cano et al., 2005; Fenet et al., 2011;
Haitsma & Kalker, 2002; Herre et al., 2002; Sonnleitner & Widmer, 2014; Avery L. Wang, 2003)
but have not been accessible for researchers due to the lack of proper, scalable, freely-available
implementations. Olaf solves this problem by providing an acoustic fingerprinting system that

Six. (2023). Olaf: a lightweight, portable audio search system. Journal of Open Source Software, 8(87), 5459. https://doi.org/10.21105/joss.05459. 1

https://orcid.org/0000-0001-7671-1907
https://doi.org/10.21105/joss.05459
https://github.com/openjournals/joss-reviews/issues/5459
https://github.com/JorenSix/Olaf
https://doi.org/10.5281/zenodo.8093527
https://brianmcfee.net
https://orcid.org/0000-0001-6261-9747
https://github.com/liscio
https://github.com/ebezzam
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05459


can be used by researchers for digital music archive management, audio-to-audio alignment on
embedded devices, or other uses.

Six et al. (2018) and Six et al. (2023) describe the applications of acoustic fingerprints for
digital music archive management. These range from meta-data quality verification - through
the identification of duplicates - to merging archives with potential duplicate material. A less
straightforward application of Olaf is audio-to-audio alignment and synchronization (Six &
Leman, 2015, 2017). In that case the matching fingerprints are used to align, e.g., multiple
video recordings of the same event, by aligning the audio attached to each video.

On a more meta-level Olaf also facilitates Music Information Retrieval (MIR) and acoustic
fingerprinting research. Audio duplicate detection can be used to clean up and evaluate machine
learning datasets (Weck & Serra, 2023). Olaf can also serve as a baseline for specific acoustic
fingerprinting cases such as broadcast audio monitoring (Cortès et al., 2022).

The portability and low memory usage of Olaf allow it to run on microcontrollers such as
the ESP32, RP2040, or similar chips with at least 250 kB memory. The memory usage to
run a 20-second query on an index containing one hour of audio is less than 512 kB1. The
embedded variant takes considerably less memory since it does not need the key-value store
and has a smaller index. This unique feature facilitates innovative IoT music recognition and
music synchronization applications. Olaf also runs in the browser. A compilation emits a
WebAssembly binary, which, together with the Web Audio API, enables browser based acoustic
fingerprinting applications.

Alternative systems with available implementations are by Chang et al. (2021), Panako2 by Six
(2022), audfprint by Ellis (2014), PeakFP by Cortès et al. (2022), ChromaPrint by Lalinský &
contributors (2023), SpectroMap by López-García et al. (2022) and Dejavu by Drevo (2020).
All have a different focus and trade-offs but none offer the portability to target browsers or
have the low memory usage to target microcontrollers.

Design
Simplicity and maintainability are two keywords in the design of Olaf. The code aims to be
as readable and simple as possible. The code uses an object-oriented inspired approach to
organize the ANSI C11 (ISO, 2011) code. Opaque structs are used to store and encapsulate
state information. Polymorphism is implemented by having a header file defining an interface
which is then implemented in different ways in source files. The choice of implementation
is done at compile time. For example, the database used by Olaf can be a key-value store
or an in-memory database. To provide this functionality, the interface olaf_db.h has two
implementations which provide either the key-value store or the in-memory database. The
modularity of Olaf makes it relatively straightforward to stack Olaf’s building blocks for use on
embedded devices, browsers and traditional computers.

C has a long history, which should allow Olaf to stand the test of time. Arguably C is the
most portable programming language and has been around for decades and will be available
for decades to come. Boring technology enables longevity. Developing bug-free code in the C
programming language is notoriously challenging. However, many bugs have been found by
running Olaf on different platforms / contexts - Windows, browsers, embedded devices, musl -
and, thanks to continuous integration. Each time Olaf is updated a battery of functional tests
are executed automatically.

For traditional computers, file handling and transcoding are governed by a companion Ruby
1A script to measure memory use can be found here:

https://github.com/JorenSix/Olaf/blob/master/eval/olaf_memory_use.rb
2Panako and Olaf implement similar algorithms, one in Java and the other in C. A direct comparison shows

that Olaf is more than twice as fast as Panako:
https://github.com/JorenSix/Olaf/tree/master/eval

Six. (2023). Olaf: a lightweight, portable audio search system. Journal of Open Source Software, 8(87), 5459. https://doi.org/10.21105/joss.05459. 2

https://doi.org/10.21105/joss.05459


script. This script expands lists of incoming audio files, transcodes audio files, checks incoming
audio, checks for duplicate material, and validates arguments and input. The Ruby script
essentially makes Olaf an easy-to-use CLI application and keeps the C parts of Olaf simple.
The C core it is not concerned with, e.g., transcoding. Crucially, the C core trusts input and
does not do much input validation and does not provide many guardrails. Since the interface
is the Ruby script, this seems warranted.

Olaf depends on two C libraries: a key-value store and an FFT library. LMDB (Chu, 2022)
serves as a high performance key-value store. PFFFT (Pommier, 2022) is used to speed up
FFT calculations. Additionally a hash table and a dequeue data structure are included from
c-algorithms (Howard, 2020). Internal documentation follows the DoxyGen (Heesch, 2023)
standards. Two papers give the rationale behind the algorithms (Six & Leman, 2014; Avery L.
Wang, 2003). Olaf can be compiled and installed using the make tool or with Zig (Kelley &
contributors, 2023) cross-compiler.

To try Olaf yourself or adapt Olaf for your needs, the code and documentation of Olaf is
hosted in a publicly-available GitHub repository.

Acknowledgements
Development of Olaf is partially funded by the Ghent University BOF Project PaPiOM.

References
Cano, P., Batlle, E., Kalker, T., & Haitsma, J. (2005). A review of audio fingerprint-

ing. The Journal of VLSI Signal Processing, 41, 271–284. https://doi.org/10.1007/
s11265-005-4151-3

Chang, S., Lee, D., Park, J., Lim, H., Lee, K., Ko, K., & Han, Y. (2021). Neural audio
fingerprint for high-specific audio retrieval based on contrastive learning. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2021), 3025–3029.
https://doi.org/10.1109/ICASSP39728.2021.9414337

Chu, H. (2022). LMDB: A general-purpose programming language and toolchain for maintaining
robust, optimal, and reusable software. In OpenLDAP repository. OpenLDAP. https:
//git.openldap.org/openldap/openldap/tree/mdb.master

Cortès, G., Ciurana, A., Molina, E., Miron, M., Meyers, O., Six, J., & Serra, X. (2022).
BAF: an audio fingerprinting dataset for broadcast monitoring. Proceedings of the 23rd
International Society for Music Information Retrieval Conference (ISMIR 2022), 908–916.
https://doi.org/10.5281/zenodo.7343030

Drevo, W. (2020). Dejavu: Audio fingerprinting and recognition algorithm implemented in
python. In GitHub repository. Github. https://github.com/worldveil/dejavu

Ellis, D. (2014). The 2014 LabROSA audio fingerprint system. MIREX abstracts of the 15th
International Symposium on Music Information Retrieval (ISMIR 2014).

Fenet, S., Richard, G., & Grenier, Y. (2011). A Scalable Audio Fingerprint Method with
Robustness to Pitch-Shifting. Proceedings of the 12th International Symposium on Music
Information Retrieval (ISMIR 2011), 121–126. https://doi.org/10.5281/zenodo.1417593

Haitsma, J., & Kalker, T. (2002). A highly robust audio fingerprinting system. Proceedings
of the 3th International Symposium on Music Information Retrieval (ISMIR 2002). https:
//doi.org/10.5281/zenodo.1417973

Heesch, D. van. (2023). Doxygen: The de facto standard tool for generating documentation
from annotated c++ sources. In Doxygen website. Doxygen. https://www.doxygen.nl/

Six. (2023). Olaf: a lightweight, portable audio search system. Journal of Open Source Software, 8(87), 5459. https://doi.org/10.21105/joss.05459. 3

https://github.com/JorenSix/Olaf
https://doi.org/10.1007/s11265-005-4151-3
https://doi.org/10.1007/s11265-005-4151-3
https://doi.org/10.1109/ICASSP39728.2021.9414337
https://git.openldap.org/openldap/openldap/tree/mdb.master
https://git.openldap.org/openldap/openldap/tree/mdb.master
https://doi.org/10.5281/zenodo.7343030
https://github.com/worldveil/dejavu
https://doi.org/10.5281/zenodo.1417593
https://doi.org/10.5281/zenodo.1417973
https://doi.org/10.5281/zenodo.1417973
https://www.doxygen.nl/
https://doi.org/10.21105/joss.05459


Herre, J., Hellmuth, O., & Cremer, M. (2002). Scalable robust audio fingerprinting using
MPEG-7 content description. Multimedia Signal Processing, 2002 IEEE Workshop on,
165–168. https://doi.org/10.1109/MMSP.2002.1203273

Howard, S. (2020). C algorithms: A collection of common computer science algorithms. In
GitHub repository. GitHub. https://github.com/fragglet/c-algorithms

ISO. (2011). ISO/IEC 9899:1999 Information technology — Programming languages — C.
International Organization for Standardization.

Kelley, A., & contributors. (2023). Zig: A general-purpose programming language and
toolchain for maintaining robust, optimal, and reusable software. In GitHub repository.
GitHub. https://github.com/ziglang/zig

Lalinský, L., & contributors. (2023). Chromaprint: An audio fingerprint library developed for the
AcoustID project. In GitHub repository. Github. https://github.com/acoustid/chromaprint

López-García, A., Martínez-Rodríguez, B., & Liern, V. (2022). A proposal to compare the
similarity between musical products. One more step for automated plagiarism detection?
In M. Montiel, O. A. Agustín-Aquino, F. Gómez, J. Kastine, E. Lluis-Puebla, & B. Milam
(Eds.), Mathematics and computation in music (pp. 192–204). Springer International
Publishing. https://doi.org/10.1007/978-3-031-07015-0_16

Pommier, J. (2022). PFFFT: A pretty fast FFT. In BitBucket repository. BitBucket. https:
//bitbucket.org/jpommier/pffft/src/master/

Six, J. (2020). OLAF: Overly lightweight acoustic fingerprinting. Extended abstracts for
the Late-Breaking Demo Session of the 21st International Society for Music Information
Conference (ISMIR 2020) .

Six, J. (2022). Panako: A scalable audio search system. Journal of Open Source Software,
7 (78). https://doi.org/10.21105/joss.04554

Six, J., Bressan, F., & Leman, M. (2018). Applications of duplicate detection in music
archives: From metadata comparison to storage optimisation. In G. Serra & C. Tasso
(Eds.), Digital libraries and multimedia archives (pp. 101–113). Springer International
Publishing. https://doi.org/10.1007/978-3-319-73165-0_10

Six, J., Bressan, F., & Renders, K. (2023). Duplicate detection for for digital audio archive
management: Two case studies. In A. Biswas, E. Wennekes, A. Wieczorkowska, & R.
H. Laskar (Eds.), Advances in speech and music technology: Computational aspects and
applications (pp. 311–329). Springer International Publishing. https://doi.org/10.1007/
978-3-031-18444-4_16

Six, J., & Leman, M. (2014). Panako - A scalable acoustic fingerprinting system handling
time-scale and pitch modification. Proceedings of the 15th ISMIR Conference (ISMIR
2014), 1–6. https://doi.org/10.5281/zenodo.1416190

Six, J., & Leman, M. (2015). Synchronizing multimodal recordings using audio-to-audio
alignment: An application of acoustic fingerprinting to facilitate music interaction re-
search. Journal on Multimodal User Interfaces, 9, 223–229. https://doi.org/10.1007/
s12193-015-0196-1

Six, J., & Leman, M. (2017). A framework to provide fine-grained time-dependent context for
active listening experiences. Audio Engineering Society Conference: 2017 AES International
Conference on Semantic Audio.

Sonnleitner, R., & Widmer, G. (2014). Quad-based audio fingerprinting robust to time and
frequency scaling. Proceedings of the 17th International Conference on Digital Audio
Effects (DAFx-14).

Six. (2023). Olaf: a lightweight, portable audio search system. Journal of Open Source Software, 8(87), 5459. https://doi.org/10.21105/joss.05459. 4

https://doi.org/10.1109/MMSP.2002.1203273
https://github.com/fragglet/c-algorithms
https://github.com/ziglang/zig
https://github.com/acoustid/chromaprint
https://doi.org/10.1007/978-3-031-07015-0_16
https://bitbucket.org/jpommier/pffft/src/master/
https://bitbucket.org/jpommier/pffft/src/master/
https://doi.org/10.21105/joss.04554
https://doi.org/10.1007/978-3-319-73165-0_10
https://doi.org/10.1007/978-3-031-18444-4_16
https://doi.org/10.1007/978-3-031-18444-4_16
https://doi.org/10.5281/zenodo.1416190
https://doi.org/10.1007/s12193-015-0196-1
https://doi.org/10.1007/s12193-015-0196-1
https://doi.org/10.21105/joss.05459


Wang, Avery L. (2003). An industrial-strength audio search algorithm. Proceedings of
the 4th International Symposium on Music Information Retrieval (ISMIR 2003), 7–13.
https://doi.org/10.5281/zenodo.1416340

Wang, A. Li-chun, & Culbert, D. (2003). Robust and invariant audio pattern matching (Patent
No. US7627477 B). In Patent US7627477 B (US7627477 B).

Weck, B., & Serra, X. (2023). Data leakage in cross-modal retrieval training: A case study.
arXiv e-Prints, arXiv–2302. https://doi.org/10.48550/arXiv.2302.12258

Six. (2023). Olaf: a lightweight, portable audio search system. Journal of Open Source Software, 8(87), 5459. https://doi.org/10.21105/joss.05459. 5

https://doi.org/10.5281/zenodo.1416340
https://doi.org/10.48550/arXiv.2302.12258
https://doi.org/10.21105/joss.05459

	Summary
	Statement of need
	Design
	Acknowledgements
	References

