
Tarsos Manual

Joren Six
joren.six@hogent.be

Royal Academy of Fine Arts & Royal Conservatory,
University College Ghent,

Hoogpoort 64, 9000 Ghent - Belgium

March 1, 2012

Contents

1 Introduction 2
1.1 What is Tarsos? . 2
1.2 Organization of this Manual . 3

2 Getting Started 4
2.1 Requirements . 4
2.2 Installation . 4
2.3 Detecting a Tone Scale With Tarsos 5
2.4 Scala Files and Tarsos . 6
2.5 Export Results . 9

2.5.1 Annotations . 9
2.5.2 Pitch Histogram . 9
2.5.3 Pitch Class Histogram . 9
2.5.4 Pitch Class Data . 9

3 Advanced Use 11
3.1 Connecting a MIDI Keyboard . 11
3.2 External Pitch Detectors . 11
3.3 Alternative Peak Detection Schemes 11

4 Processing Datasets with Tarsos 12
4.1 Directory and file naming structure 12
4.2 Command line applications . 13
4.3 Scripting Tarsos . 13

4.3.1 The Tarsos API . 14
4.3.2 Example scripts . 14

A Pitch, Pitch Interval & Pitch Ratio Representation 21
A.1 Pitch & Pitch Interval Representation 21
A.2 Pitch Ratio Representation . 22
A.3 Conclusion . 23

B Maqams 24

1

Chapter 1

Introduction

This is the manual for Tarsos a modular software platform to extract and analyze
pitch organization in musical audio. Tarsos can be used to automatically detect
the tone scale of most music. The manual is geared towards:

• Musicologists: to identify tone scales in musical pieces. Either detailed,
manually assisted analysis of one piece or automatic analysis of a large
number of pieces.

• Musicians: to improve their intonation.

• Composers: to experiment with (micro) tonality.

1.1 What is Tarsos?

Tarsos is a modular software platform to extract and analyze pitch and scale
organization in music, especially aiming at the analysis of non-Western music.
Tarsos aims to be a user-friendly, graphical tool to explore tone scales and pitch
organization in music of the world. With Tarsos pitch annotations are extracted
from an audio signal that are then processed to form musicologically meaningful
representations. These representations cover more than the typical Western 12
pitch classes, since a fine-grained resolution of 1200 cents is used.

The Tarsos API creates opportunities to analyse large sets of - ethnic -
music automatically. With the Application Programmers Interface tasks can
be automated by programming scripts. For examples see 4.3.1. The graphical
user interface can be used for detailed, manually adjusted analysis of specific
songs. Section 2.3 contains details on how to work with the interface. Several
output modalities make Tarsos an interesting tool for musicological analysis,
educational purposes and even for artistic productions. The different output
options are listed in section 2.5.

Tarsos is open source and and runs on any recent Java Runtime. JRE (Java
Rutime Environment) 5 is supported, 6 or higher advised. Tarsos is available

2

on the Tarsos website1 and is developed at the Royal Academy of Fine Arts
& Royal Conservatory, University College Ghent, Belgium2 To cite our work
please refer to [8]:

@inproceedings{six2011tarsos,
author = {Joren Six and Olmo Cornelis},
title = {{T}arsos - a {P}latform to {E}xplore {P}itch

{S}cales in {N}on-{W}estern and
{W}estern {M}usic},

booktitle = {Proceedings of the 12th ISMIR Conference},
year = {2011}

}

1.2 Organization of this Manual

This text is structured as follows: after this introduction the next chapter con-
tains a down to earth explanation on how to get started. It features some basic
use cases. More advanced use is explained in the following chapter. In the final
chapter the graphical interface is left behind: it covers how to process large sets
of audio from the command line or by writing scripts yourself.

Text that is present somewhere on the GUI (Graphical User Interface) is
represented by a mono spaced font. E.g. the File-Open... menu. If you
reading this manual digitally the URL’s used throughout this text are clickable
E.g. the Tarsos Website3, the full URL is embedded as a footnote, for reading
on paper. Bold is used to give a quick summary of a paragraph: the TL;DR.
E.g. typographical conventions. Source code is embedded as in Listing 1.1.

Listing 1.1: Source code example

1 if(true){
Console.println("Source")

}

1http://tarsos.0110.be
2http://cons.hogent.be
3http://tarsos.0110.be

3

http://tarsos.0110.be
http://cons.hogent.be
http://cons.hogent.be
http://tarsos.0110.be
http://tarsos.0110.be
http://cons.hogent.be
http://tarsos.0110.be

Chapter 2

Getting Started

2.1 Requirements

Tarsos is programmed in Java. To run Tarsos you need a recent Java Runtime
Environment (JRE) on your computer. JRE version 5.0 or newer is required,
JRE version 6 is advised. To check if Java is installed on your machine use the
tools provided on the Java website1. There you can also find which version of
Java is installed on your machine. If Java is not installed you can find installation
instructions, for different operating systems, on the same website.

Apart from a Java Runtime, there are little other requirements. Tarsos
should work on any operating system and is regularly tested on Ubuntu
11.04, Windows XP, Windows 7 and Mac OS X 10.7. As to be expected analysis
on large files will go faster on a more recent, beefier computer.

2.2 Installation

To run Tarsos you need a recent JavaRuntime Environment (JRE) on your com-
puter. See 2.1 to check if you have Java installed or for installation instructions.

The installation procedure for Tarsos is straightforward: you need to down-
load one executable file (a JAR-file) and double click it. The executable can
be found on the Tarsos website2. If double clicking does not work, please check
if Java is properly installed on your system.

Linux or Unix systems using the PulseAudio sound system do not cooperate
very well with the Sun (Oracle) Java 6 Runtime Environment. To alleviate
this annoyance it is recommended to install the PulseAudio to Java bridge.
Documentation on how to get PulseAudio Support3 for Sun Java 6 an Ubuntu

1http://java.com
2http://tarsos.0110.be/attachment/tarsos.jar
3http://tarsos.0110.be/artikels/lees/PulseAudio_Support_for_Sun_Java_

6_on_Ubuntu

4

http://java.com
http://tarsos.0110.be/attachment/tarsos.jar
http://tarsos.0110.be/artikels/lees/PulseAudio_Support_for_Sun_Java_6_on_Ubuntu
http://java.com
http://tarsos.0110.be/attachment/tarsos.jar
http://tarsos.0110.be/artikels/lees/PulseAudio_Support_for_Sun_Java_6_on_Ubuntu
http://tarsos.0110.be/artikels/lees/PulseAudio_Support_for_Sun_Java_6_on_Ubuntu

system with an AMD64 processor architecture is available. The procedure for
other processor architectures or other Unix-like operating systems is similar.

2.3 Detecting a Tone Scale With Tarsos

Once Taros is correctly installed and up and running you can start detecting tone
scales. The following procedure documents how you can find the tone scale of a
piece of music. A more formal description of this task is how to detect the most
commonly used pitch classes within a piece of music. This set of pitch classes
can be a subset of the complete scale. The procedure is based on peak detection
on a pitch class histogram, which is only useful for music with pitch organized
in octaves. Music without octave equivalence is much less common but can be
analysed using the pitch histogram which contains the same information, not
reduced to one octave. In [3] the following is stated about pitch relationships
and octave equivalence:

“... the use of discrete pitch relationships, as well as the concept
of octave equivalence seem, while not universal in early and pre-
historic music (Nettl 1956; Sachs 1962), rather common to current
musical systems (Burns 1999).”

To be able to interpret the results one needs to fully understand both the
limitations of the pitch detection algorithm used and how a pitch (class) his-
togram is constructed. Knowledge about the music under analysis is also a
boon.

To execute this task you need an audio file with an interesting tone scale.
An example audio file with a tone scale based on an octave division in 10 equal
parts of 120 cents4 can be found here5. Examples using this file will be returning
throughout this text.

1. Using the File-Open... menu to choose a file is the first step to detect
a tone scale. Tarsos is also capable to open audio files by drag and drop.
The audio can be in almost any format. In the background FFmpeg6 is
used to convert audio to WAV. This is indicated by 1 in Figure 2.1.

2. The second step is simple: wait until the file is analysed by one or more
pitch detection algorithms. By default a platform independent implemen-
tation of YIN[1] is used, it should ’just work’. See 3.2 if you want to try
out other pitch detectors. After the file is analysed it starts to play and a
pitch class histogram emerges. This histogram represents how many times
each pitch class is detected. This is indicated by 2 in Figure 2.1.

4See appendix A for more information about the cents unit. There you can also find
conversion formulas and pitch representation conventions used within Tarsos.

5http://tarsos.0110.be/attachment/cons/200/bach_BWV_1007_120.mp3
6FFmpeg is used by Tarsos as a cross-platform solution to convert audio. It has support

for MP3, FLAC, Monkey’s Audio, WMAv2, Theora, MusePack, etc. The supported audio
formats depend on which version of FFmpeg is used by your system.

5

http://tarsos.0110.be/attachment/cons/200/bach_BWV_1007_120.mp3
http://tarsos.0110.be/attachment/cons/200/bach_BWV_1007_120.mp3

3. The third step is to detect the pitch classes that are most frequently
used. In practice this means peak detection on the pitch class histogram.
This can be done automatically and is visualised in Figure 2.1 as step 3.
The sliders modify parameters of the peak detection strategy. Immediate
visual feedback shows the detected locations in the pitch class histogram,
the detected pitch classes. Manual adjustment is sometimes required en
is therefore possible:

• To add a pitch class hold down alt while hovering the mouse pointer
over the pitch class histogram. Pressing the left mouse button while
hovering fixes it to the current location.

• To change a pitch class hold down ctrl while hovering over the
pitch class histogram, this selects the closest pitch class. Pressing
the left mouse button while hovering fixes it to the new location.

• To remove a pitch class hold down ctrl while hovering over the
pitch class histogram, this selects the closest pitch class. Pressing
delete or d removes the selected pitch class.

Auditory feedback is possible by clicking the pitch class histogram. This
produces a sound that can be compared to the actual pitch classes present
in the analysed audio.

2.4 Scala Files and Tarsos

Scala files are descriptions of tone scales. They are defined and used by the
Scala software program. To quote the Scala website7:

“Scala is a powerful software tool for experimentation with mu-
sical tunings, such as just intonation scales, equal and historical
temperaments, microtonal and macrotonal scales, and non-Western
scales. It supports scale creation, editing, comparison, analysis, stor-
age, tuning of electronic instruments, and MIDI file generation and
tuning conversion. All this is integrated into a single application with
a wide variety of mathematical routines and scale creation methods.
Scala is ideal for the exploration of tunings and becoming familiar
with the concepts involved. In addition, a very large library of scales
is freely available for Scala and can be used for analysis or music
creation.”

The Scala program comes with a data set of over 3900 scales ranging from
historical harpsichord temperaments over ethnic scales to scales used in contem-
porary music. This data set has been used, amongst many other applications,
in a study trying to find universal properties of scales[3]. Tarsos can parse and
export Scala scale files. This feature makes Tarsos great in tandem with Scala.

7http://www.huygens-fokker.org/scala/

6

http://www.huygens-fokker.org/scala/
http://www.huygens-fokker.org/scala/

;

Figure 2.1: How to detect a tone scale with Tarsos 1 use the file menu to open
a file, 2 the file is converted and pitch is analysed automatically, 3 use the peak
picking slider to automatically detect pitch classes in the pitch class histogram.

7

The Scala scale file format is a simple, human readable format which uses
plain text files. A complete definition can be found on the Scala scale file
format reference page8. This is an example of a heptatonic Indonesian Pelog
scale, encoded using the file format rules. All values, except for the last one, are
in cents: the last one uses a fraction. Understanding the file format can help
you to create your own scales and gain insight in the results of Tarsos.

! pelog_me1.scl
!
Gamelan Kyahi Kanyut Mesem pelog. 1/1=295 Hz
7
!
124.521
271.058
522.809
688.207
787.819
954.515
2/1

There are a couple of things you can do with Scala files and Tarsos.

• Compare the current scale with a scala file.

1. Detect the tone scale of a song. See section 2.3. Important: peak
detection needs to be done.

2. Open a scala file using the File-Open... menu.

3.

• Find the most similar scale to the current scale from a folder of
Scala files.

1. Detect the tone scale of a song. See section 2.3. Important: peak
detection needs to be finished.

2. Create a folder with a number of scala files.

3. Open the folder using the File-Open... menu.

4. The closest scale is detected from the folder and overlayed on the
detected pitch class histogram.

• Tune a MIDI Synthesizer with a Scala file: Doing this is simple.
Choose the Scala file using the File-Open... menu and the internal
MIDI Synthesizer is tuned immidiately according to description found in
the Scala file. If you want to tune another MIDI synthesizer you need to
check if it supports MIDI TUNING DUMP-messages9 and select the correct
output in the Settings-MIDI Devices-Output menu.

8http://www.huygens-fokker.org/scala/scl_format.html
9It probably does not. There are very few synthesizers with support for these types of

messages. Even most software synthesizers do not implement them. Notable exceptions are:
Gervill (used by default within Tarsos),

8

http://www.huygens-fokker.org/scala/scl_format.html
http://www.huygens-fokker.org/scala/scl_format.html
http://www.huygens-fokker.org/scala/scl_format.html

Start (seconds) Pitch (Hz) Probability 0-1 Source

11.0875 363.2373 0.80101 TARSOS YIN
12.0744 341.1381 0.89111 TARSOS YIN

...
...

...
...

Table 2.1: Example CSV output for annotations

2.5 Export Results

Tarsos contains export capabilities for every step in the process, from raw pitch
annotations until the pitch class interval matrix. The built-in export functions
are ordered from low to higher level musicological meaning. Here an overview
is given of the export modalities, using the same order.

2.5.1 Annotations

• CSV file see 2.1

• Audio

2.5.2 Pitch Histogram

• CSV

• PNG

• EPS

2.5.3 Pitch Class Histogram

• CSV

• PNG

• EPS

• PNG octave splits

• LATEX see figure 2.2

2.5.4 Pitch Class Data

• Scala file

• Interval matrix LATEX see table 2.2

9

165 423 675 885 1113

100
200
300
400
500
600

Pitch (cent)N
u
m
be
r
of

a
n
n
ot
a
ti
on

s

Figure 2.2: Example of a LATEX-export of a pitch class histogram

P.C. 165 423 675 885 1113

165 0 258 510 720 948
423 942 0 252 462 690
675 690 948 0 210 438
885 480 738 990 0 228
1113 252 510 762 972 0

Table 2.2: Example of a LATEX-export of a pitch class interval matrix. P.C.
stands for pitch class, the values are given in cents.

10

Chapter 3

Advanced Use

3.1 Connecting a MIDI Keyboard

MIDI routing , MIDI keyboard. Alternative synths.

3.2 External Pitch Detectors

• How to configure vamp plugins

• How to configure ipem six

• MPM[5].

3.3 Alternative Peak Detection Schemes

11

Chapter 4

Processing Datasets with
Tarsos

General tips and tricks (md 5, . . .) configuration of directories, shares server
processing.

4.1 Directory and file naming structure

Since transcoding and detecting pitch are computationally expensive operations
Tarsos contains facilities to prevent needless work. Imagine the following: you
are in possession of a large data set (10000+ files) of music using all sorts of
scales and want to do research on pitch use in those files, together with a couple
of colleagues, lets call them Franz-Jozeph, Gerhard and Edwin - you are Edwin.
To make things easy there is a central server with a file share of the data set
available for everybody on the network. As always Edwin, the computer science
guy, has made this possible. The central server also contains a file share writable
by Franz-Jozeph, Gerhard and, of course, our protagonist Edwin. Everybody
has Tarsos running on their machine with the data directory of Tarsos configured
to this writable share.

Every time a file - file_name.ogg - is analysed by one of the three friends a
new directory is created on the share. The new directory has a name looking like
this: file_name_5878ef547f0942ec. This directory contains a transcoded
version of the file file_name_transcoded.wav and zero or more pitch detec-
tion result files: tarsos_yin_file_name.txt. The 5878ef547f0942ec
part of the directory name is an MD5[6] calculated using the first 256kB of the
original file. When the exact same file is analysed first by Edwin - on Linux -
and later by Gerhard - on Windows - transcoding and pitch detection is only
executed once. This scheme even allows that Gerhard, who uses Mac OS X, can
copy and rename the file on his local hard drive and analyse it quicly: it is still
recognised as the same file and transcoded, pitch detected only once. Getting
rid of the waiting time almost entirely is possible by analysing each file once on

12

the server.

4.2 Command line applications

Tarsos contains a couple of useful command line applications. They can be used
to execute common tasks on lots of files. To call the applications the following
format is used:

java -jar tarsos.jar command [args..] [--option [value]..]

The first part java -jar tarsos.jar tells the Java Runtime to start
the correct application. The first argument for Tarsos defines the command line
application to execute. Depending on the command required arguments and
options can follow. On a Bash shell it is advised to create a bash function with
the name tarsos e.g.:

Listing 4.1: Tarsos Bash function

function tarsos() { java -jar /home/joren/tarsos.jar "$@" ; }

With this function java -jar tarsos.jar becomes tarsos A typical
example application looks like this:

tarsos detect_pitch input.wav --detector TARSOS_YIN

• AudioFile An encapsulation for a sound file. It has methods to transcode
audio, query its length, location, calculate hashes, . . .

• Configuration Manages configuration settings for Tarsos. It uses the
default Java configuration manager. It is an utility class to read and write
configration settings.

• PitchHistogram A (non octave reduced) histogram.

• PitchClassHistogram An octave reduced histogram.

• KernelDensityEstimate A different kind of histogram, constructed
using kernels to prevent the influence of bin widths. When using Gaussian
kernels it also creates a smoother curve.

4.3 Scripting Tarsos

This section explains how to write batch scripts that process many audio files
or how to use the inner functions of Tarsos in a new way. Tarsos is written
in Java, and is extendable using scripts in any language that targets the JVM
(Java Virtual Machine). The functions exposed by the Tarsos API can be called

13

using e.g. JRuby, Jython, Scala, Clojure, Groovy, and of course plain old Java1.
In this text we will use Scala2 for its concurrency support, concise syntax and
seamless interoperability with Java. Altough the Scala programming language
is used here, the concepts explained apply to scripts in any language.

4.3.1 The Tarsos API

Full documentation for the Tarsos API3 is available. The API is rather extensive
but the main abstractions are documented here. This should help you to get
started.

• AudioFile An encapsulation for a sound file. It has methods to transcode
audio, query its length, location, calculate hashes, . . .

• Configuration Manages configuration settings for Tarsos. It uses the
default Java configuration manager. It is an utility class to read and write
configration settings.

• PitchHistogram A (non octave reduced) histogram.

• PitchClassHistogram An octave reduced histogram.

• KernelDensityEstimate A different kind of histogram, constructed
using kernels to prevent the influence of bin widths. When using Gaussian
kernels it also creates a smoother curve.

Instead off a tiresome description of all components the API provides the
remainder of this chapter contains some task oriented examples. The examples
should make the possibilities of the API clear and illustrate how to leverage
those capabilities. If the task you want to achieve is not similar to one of the
examples you can still consult the full documentation.

4.3.2 Example scripts

The example scripts use the Scala programming language version 2.9, to install
Scala correctly on your platform, please see the Scala website4. The scripts can
be executed from a command line when they have the correct header. For the
Bash shell under Unix compatible systems the header looks like this:

Listing 4.2: Pitch Class histo creation

#!/bin/sh
exec scala -cp tarsos.jar -savecompiled "$0" "$@"

1The website of each language: http://www.jruby.org/, http://www.jython.org/,
http://www.scala-lang.org/, http://clojure.org/, http://groovy.codehaus.
org/

2Please do not confuse the general purpose Scala programming language with the tool to
experiment with tunings, the Scala program.

3http://tarsos.0110.be/attachment/doc/
4http://scala-lang.org

14

http://tarsos.0110.be/attachment/doc/
http://scala-lang.org
http://www.jruby.org/
http://www.jython.org/
http://www.scala-lang.org/
http://clojure.org/
http://groovy.codehaus.org/
http://groovy.codehaus.org/
http://tarsos.0110.be/attachment/doc/
http://scala-lang.org

!#
4 import be.hogent.tarsos.util._
//other import statements

The header makes the Tarsos functions available in the script by including
tarsos.jar, located in the same directory as the script. The savecompiled
option saves the compiled version so the start up time of the second run is
limited. The first statement tells Bash which interpreter to use - scalac -, this
makes running it by calling ../scala_script.sh possible. Note that the file
needs to be executable chmod +x scala_script.sh.

Iterate and transcode files

The first task is strictly utilitarian. This is the scenario: over the years I have
collected music with different tone scales. All the music is nicely digitized but,
as it often happens, I was a bit sloppy. There files are stored in various formats
(MP3, WAVE, WMA, APE, FLAC, . . .) and some duplicates are present in my
botched directory structure. The aim of this task is to identify duplicates and
transcode all music to one, lossless, format. Also all the files are copied to one
directory.

Configuring the target directory is the first step. Luckily this is as simple as
calling Configuration.set(ConfKey.data_directory,"/home/user").

Listing 4.3: Pitch Class histo creation

def handleAudioFile(audioFile: AudioFile) = {
val detectorYin = PitchDetectionMode.VAMP_YIN_FFT.getPitchDetector

(audioFile)
detectorYin.executePitchDetection()

}
5

def handleSomeAudioFiles(audioFiles: List[String],modulo: Int,thread
: Int){

var counter = 0;
audioFiles.foreach{ file =>

10 if(counter % modulo == thread){
val audioFile = new AudioFile(file)

handleAudioFile(audioFile)
}
counter = counter + 1;

15 }
}

def handleAudioFilesConcurrently(numberOfThreads: Int) = {
val directory = "folder"

20 val audio_pattern = Configuration.get(ConfKey.
audio_file_name_pattern)

val audioFiles = FileUtils.glob(directory,audio_pattern,true).
toList

for(i <- 0 until numberOfThreads) {
actor {
self ! handleSomeAudioFiles(audioFiles,numberOfThreads,i)

15

25 }
Console.println("Started thread " + i);

}
}

30 handleAudioFilesConcurrently(6)

Tone Scale estimation

This script implements following task: find the tone scales most similar to the
one used in recorded music. To complete this task you need a small set of
theoretical scales and a large set of music, each brought in one of the scales. To
make it more concrete, an example of Turkish classical music is used.

In an article by Bozkurt[2] pitch histograms are used for - amongst other
tasks - makam5 recognition. The task is to identify which of nine makams is
used in a specific song. A simplified, generalized implementation of this task is
shown here. In this implementation there is no tonic detection step. Also here
we use only theoretical descriptions of the tone scales as a template and do not
construct a template using the audio itself, as is done by Bozkurt.

Listing 4.4: Tone Scale Estimation

val makams = List("hicaz","huseyni","huzzam","kurdili_hicazar","
nihavend","rast","saba","segah","ussak")

val audio_pattern = Configuration.get(ConfKey.
audio_file_name_pattern)

//parse scala files, store KDE’s in a hash map
5 var theoreticKDEs = Map[java.lang.String,KernelDensityEstimate]()
makams.foreach{ makam =>
val scalaFile = "/media/share/joren/datasets/Turkish_Makam/scala/"

+ makam + ".scl"
val scalaObject = new ScalaFile(scalaFile);
val kde = HistogramFactory.createPichClassKDE(scalaObject,35)

10 kde.normalize
theoreticKDEs = theoreticKDEs + (makam -> kde)

}

//print an sorted result (guess, correlation) for each file
15 Console.println("\n\nResults\n\n")

Console.println("Index;Answer; " + theoreticKDEs.toList.map{ r => "
Guess;Correlation"}.mkString(";"))

var index = 0;
makams.foreach{ makam =>
val directory = "/media/share/joren/datasets/Turkish_Makam/" +

makam
20 val audioFiles = FileUtils.glob(directory,audio_pattern,true).

toList
audioFiles.foreach{ file =>

val audioFile = new AudioFile(file)

5A maqam defines rules for a composition or performance of classical Turkish music. It
specifies melodic shapes and pitch intervals.

16

val detectorYin = PitchDetectionMode.TARSOS_YIN.getPitchDetector
(audioFile)

val annotations = detectorYin.executePitchDetection()
25 //only large files

if(annotations.size > 3000) {
val actualKDE = HistogramFactory.createPichClassKDE(

annotations,15);
var resultList = List[Tuple2[java.lang.String,Double]]()
actualKDE.normalize

30 for ((name, theoreticKDE) <- theoreticKDEs){
val shift = actualKDE.shiftForOptimalCorrelation(

theoreticKDE)
val currentCorrelation = actualKDE.correlation(theoreticKDE,

shift)
resultList = (name -> currentCorrelation) :: resultList

}
35 //order by correlation

resultList = resultList.sortBy{_._2}.reverse
index = index + 1
//print the ordered result
Console.println(index + ";" + makam + ";" + resultList.map{e

=> e._1 + ";" + e._2}.mkString(";") + ";")
40 }

}
}

With this script it is possible to correctly identify 39% of the makams using a
data set of 800 files. Some makams look very much alike: if the first three guesses
are evaluated the correct makam is present in 75% of the cases.This method is
very general and directly applicable to e.g. harpsichord tuning estimation as
done, using another approach, by Tidhar et al[9].

Find by example

Resynthesize files

17

Bibliography

[1] Alain de Cheveigné and Kawahara Hideki. Yin, a fundamental frequency
estimator for speech and music. The Journal of the Acoustical Society of
America, 111(4):1917–1930, 2002.

[2] Ali C. Gedik and Barış Bozkurt. Pitch-frequency histogram-based music
information retrieval for turkish music. Signal Processing, 90(4):1049–1063,
2010.

[3] Aline Honingh and Rens Bod. In Search of Universal Properties of Musical
Scales. Journal of New Music Research, 40(1):81–89, 2011.

[4] Philip McLeod. Fast, accurate pitch detection tools for music analysis. PhD
thesis, University of Otago. Department of Computer Science, 2009.

[5] Phillip McLeod and Geoff Wyvill. A smarter way to find pitch. In Proceed-
ings of International Computer Music Conference, ICMC, 2005.

[6] Ronald L. Rivest. The MD5 Message-Digest Algorithm (RFC 1321). http:
//www.ietf.org/rfc/rfc1321.txt?number=1321.

[7] William Sethares. Tuning Timbre Spectrum Scale. Springer, 2 edition, 2005.

[8] Joren Six and Olmo Cornelis. Tarsos - a Platform to Explore Pitch Scales in
Non-Western and Western Music. In Proceedings of the 12th International
Symposium on Music Information Retrieval (ISMIR 2011), 2011.

[9] Dan Tidhar, Matthias Mauch, and Simon Dixon. High precision frequency
estimation for harpsichord tuning classification. In Acoustics Speech and
Signal Processing (ICASSP), 2010 IEEE International Conference on, pages
61–64, march 2010.

18

http://www.ietf.org/rfc/rfc1321.txt?number=1321
http://www.ietf.org/rfc/rfc1321.txt?number=1321

List of Figures

2.1 How to detect a tone scale with Tarsos 1 use the file menu to open
a file, 2 the file is converted and pitch is analysed automatically,
3 use the peak picking slider to automatically detect pitch classes
in the pitch class histogram. 7

2.2 Example of a LATEX-export of a pitch class histogram 10

19

List of Tables

2.1 Example CSV output for annotations 9
2.2 Example of a LATEX-export of a pitch class interval matrix. P.C.

stands for pitch class, the values are given in cents. 10

20

Appendix A

Pitch, Pitch Interval &
Pitch Ratio Representation

Since different representations of pitch are used by Tarsos and other pitch ex-
tractors this section contains definitions of and remarks on different pitch and
pitch interval representations. For good measure we need a definition of pitch,
here the definition from [4] is used:

The pitch frequency is the frequency of a pure sine wave which
has the same perceived sound as the sound of interest.

For remarks and examples of cases where the pitch frequency does not coin-
cide with the fundamental frequency of the signal see [4].

A.1 Pitch & Pitch Interval Representation

Since we are interested in a frequency or frequency interval Hertz (Hz), oscilla-
tions per second, seems the most appropriate unit. When working with sound
this is not always the case. For humans the perceptual distance between 220Hz
and 440Hz is the same as between 440Hz and 880Hz. A pitch representation that
takes this logarithmic relation into account is more practical for some purposes.
Luckily there are a few:

MIDI Note Number
The MIDI standard defines note numbers from 0 to 127, inclusive. Nor-
mally only integers are used but any frequency f in Hz can be represented
with a fractional note number n using equation A.1.

n = 69 + 12 log2(
f

440
) (A.1)

n = 12 × log2(
f

r
) ; r =

440

2(69/12)
= 8.176Hz (A.2)

21

Rewriting equation A.1 to A.2 shows that MIDI note number 0 corre-
sponds with a reference frequency of 8.176Hz which is C−1 on a keyboard
with A4 tuned to 440Hz. It also shows that the MIDI standard divides
the octave in 12 equal parts.

To convert a MIDI note number n to a frequency f in Hz one of the
following equations can be used.

f = 440 × 2(n−69)/12 (A.3)

f = r × 2(n/12) with r = 8.176Hz (A.4)

Using pitch represented as fractional MIDI note numbers makes sense
when working with MIDI instruments and MIDI data. Although the MIDI
note numbering scheme seems oriented towards western pitch organization
(12 semitones) it is conceptually equal to the cent unit which is more
widely used in ethnomusicology.

Cent
Ellis introduced the nowadays widely accepted cent unit. To convert a
frequency f in Hz to a cent value c relative to a reference frequency r also
in Hz.

c = 1200 × log2(
f

r
) (A.5)

With the same reference frequency r equations A.5 and A.2 differ only by
a constant factor of exactly 100. In an environment with pitch represen-
tations in MIDI note numbers and cent values it is practical to use the
standardized reference frequency of 8.176Hz.

To convert a frequency f in Hz to a cent value c relative to a reference
frequency r also in Hz.

f = r × 2(c/1200) (A.6)

Savart & Millioctaves
Divide the octave in 301.5 and 1000 parts respectively, which is the only
difference with cents.

A.2 Pitch Ratio Representation

Pitch ratios are essentially pitch intervals, an interval of one octave, 1200 cents
equal to a frequency ratio of 2/1. To convert a ratio t to a value in cent c:

c =
1200 ln(t)

ln(2)
(A.7)

22

The natural logarithm, the logarithm base e with e being Euler’s number, is
noted as ln. To convert a value in cent c to a ratio t:

t = e
c ln(2)
1200 (A.8)

Further discussion on cents as pitch ratios can be be found in appendix B of
[7]. There it is noted that:

There are two reasons to prefer cents to ratios: Where cents are
added, ratios are multiplied; and it is always obvious which of two
intervals is larger when both are expressed in cents. For instance, an
interval of a just fifth, followed by a just third is (3/2)(5/4) = 15/8,
a just seventh. In cents, this is 702 + 386 = 1088. Is this larger or
smaller than the Pythagorean seventh 243/128? Knowing that the
latter is 1110 cents makes the comparison obvious.

A.3 Conclusion

The cent unit is mostly used for pitch interval representation while the MIDI key
and Hz units are used mainly to represent absolute pitch. The main difference
between cent and fractional MIDI note numbers is the standardized reference
frequency. In our software platform Tarsos we use the exact same standardized
reference frequency of 8.176Hz which enables us to use cents to represent abso-
lute pitch and it makes conversion to MIDI note numbers trivial. Tarsos also
uses cents to represent pitch intervals and ratios.

23

Appendix B

Maqams

24

	Introduction
	What is Tarsos?
	Organization of this Manual

	Getting Started
	Requirements
	Installation
	Detecting a Tone Scale With Tarsos
	Scala Files and Tarsos
	Export Results
	Annotations
	Pitch Histogram
	Pitch Class Histogram
	Pitch Class Data

	Advanced Use
	Connecting a MIDI Keyboard
	External Pitch Detectors
	Alternative Peak Detection Schemes

	Processing Datasets with Tarsos
	Directory and file naming structure
	Command line applications
	Scripting Tarsos
	The Tarsos API
	Example scripts

	Pitch, Pitch Interval & Pitch Ratio Representation
	Pitch & Pitch Interval Representation
	Pitch Ratio Representation
	Conclusion

	Maqams

