
Digital Sound Processing and Java
Documentation for the TarsosDSP∗Audio Processing Library

Joren Six

University College Ghent, Faculty of Music
Hoogpoort 64, 9000 Ghent - Belgium

joren.six@hogent.be

November 27, 2012

The main goal of this text is to bridge the gap between a mathematical
description of a digital signal process and a working implementation. The
text starts with calculating sound buffers, then proceeds to illustrate audio
output and explains the connection between the two. Along the way the
format of WAV-files are explained. Then it proceeds with operations on
sound. This text is meant to be accompanying releases of the TarsosDSP
audio processing library: it should clarify the concepts used in the source
code.

In short this text should at least get you starting with audio DSP using
Java.

Contents

1 Sampled Sound Using Java 3
1.1 Audio buffers in Java . 3
1.2 And Then There Was . . . Sound . 5

2 Operations on Sound 7
2.1 Sound Detection . 7
2.2 Echo Effect . 8
2.3 Pitch Detection . 9
2.4 Time-Scale Modification in Time Domain 9
2.5 Percussion Detection . 9
2.6 Filtering . 9

∗http://tarsos.0110.be/tag/TarsosDSP

1

http://tarsos.0110.be/tag/TarsosDSP
joren.six@hogent.be
http://tarsos.0110.be/tag/TarsosDSP

3 Utility functions 9
3.1 Write a WAV-file . 9
3.2 Audio Playback . 9
3.3 Interrupt a loop . 9
3.4 Fourier Analysis . 9

2

1 Sampled Sound Using Java

To process sound digitally some kind of conversion is needed from an analog to a digital
sound signal. This conversion is done by an ADC: an analog to digital converter. An
ADC has many intricate properties, making sure no information is lost during the con-
version. For the principle of audio processing the most important ones are the sampling
rate and bit depth [6].

The sampling rate measures samples per second, it is defined in Hertz (Hz). The
Nyquist-Shannon sampling theorem[7] states that you need to sample at twice the max-
imum frequency of the information you want to convey. If lower sampling rates are used
part of the information is lost. Speech is contained in the frequency range from 30Hz to
3000Hz. Applying Nyquist-Shannon, a sampling rate of 6kHz should be enough. Some
telephone systems use 8kHz.

The human ear is capable of detecting sounds between about 20Hz and 20kHz, de-
pending from person to person. Sampling musical signals at about twice the maximum
hearing frequency makes sense. 44100Hz, 48000Hz are common sampling rates for mu-
sical information (20kHz × 2 < 44.1kHz).

The bit depth is the number of bits used to represent the value of a sample. Using
signed integers of 16 bits is common practice. The following example shows how these
concepts translate to the Java programming language.

1.1 Audio buffers in Java

f(x) = 0.8× sin(2πf) (1)

One of the most simple audio signals is a sine wave. This is also known as a pure tone.
A pure tone is characterized by a frequency f and an amplitude. A sine wave (equation
1) is depicted in Figure 1.

f(x)

x

Figure 1: Continuous sine wave

To use the sine wave for signal processing it needs to be sampled. On Figure 2
the sampling rate defines the horizontal granularity, the bit depth defines the vertical

3

f(x)

x

Figure 2: Sampled sine wave

granularity. How to create an array containing a sampled sine wave using Java can be
seen in Listing 6.

Listing 1: A sampled sine wave

1 double sampleRate = 44100.0;
double frequency = 440.0;
double amplitude = 0.8;
double seconds = 2.0;
double twoPiF = 2 * Math.PI * frequency;

6 float[] buffer = new float[(int) (seconds * sampleRate)];
for (int sample = 0; sample < buffer.length; sample++) {

double time = sample / sampleRate;
buffer[sample] = (float) amplitude * Math.sin(twoPiF * time);

}

After executing the code in Listing 6 the buffer contains a two seconds long pure tone
of 440Hz, sampled at 44.1kHz. Each sample is calculated using the Math.sin function
and is converted to a float following the advice found on http://java.sun.com/
docs/books/tutorial/java/nutsandbolts/datatypes.html:

It is recommended to use a float (instead of double) if you need to save
memory in large arrays of floating point numbers. This data type should
never be used for precise values, such as currency.

Pure tones are not commonly found in the wild. A more realistic sound can be
generated by using equation 2. This sound consists of a base frequency and a harmonic
at 6 times the base frequency.

f(x) = 0.8× sin(x) + 0.2× sin(6x) (2)

Creating a buffer with this information:

Listing 2: A complex wave buffer

double sampleRate = 44100.0;

4

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html

f(x)

x

f(x)

x

Figure 3: A continuous and discrete complex wave representing equation 2.

double seconds = 2.0;

double f0 = 440.0;
5 double amplitude0 = 0.8;
double twoPiF0 = 2 * Math.PI * f0;

double f1 = 6 * f0;
double amplitude1 = 0.2;

10 double twoPiF1 = 2 * Math.PI * f1;

float[] buffer = new float[(int) (seconds * sampleRate)];
for (int sample = 0; sample < buffer.length; sample++) {

double time = sample / sampleRate;
15 double f0Component = amplitude0 * Math.sin(twoPiF0 * time);

double f1Component = amplitude1 * Math.sin(twoPiF1 * time);
buffer[sample] = (float) (f0Component + f1Component);

}

1.2 And Then There Was . . . Sound

A conversion step is needed before the sound can be heard. The float buffer contains
numbers in the range [−1.0, 1.0]. Those need to be mapped to e.g. 16bit signed little
endian PCM. This can be done by multiplying with b(216−1)/2c = 32767. Every sample
is then 16 bits or two bytes, each sample is converted to two bytes. In Java lingo: the
byte array needs to be twice the length of the float array.

5

Listing 3: Converting floats to bytes

final byte[] byteBuffer = new byte[buffer.length * 2];
2 int bufferIndex = 0;
for (int i = 0; i < byteBuffer.length; i++) {

final int x = (int) (buffer[bufferIndex++] * 32767.0);
byteBuffer[i] = (byte) x;
i++;

7 byteBuffer[i] = (byte) (x >>> 8);
}

To make the sound audible it can be written to a WAVE file. A WAVE file consists of
a header followed by the sound data. The sound data is nothing more or less than the
PCM format we calculated. The WAVE file header1 format stems from the time that
Microsoft and IBM were still best friends, it is defined in a joint specification[3]. Writing
headers is a bit boring luckily there are a few utility classes available in the standard
Java library in the javax.sound.sampled package which make this task effortless:

Listing 4: Writing a WAV-file

File out = new File("out.wav");
2 boolean bigEndian = false;
boolean signed = true;
int bits = 16;
int channels = 1;
AudioFormat format;

7 format = new AudioFormat(sampleRate, bits, channels, signed, bigEndian);
ByteArrayInputStream bais = new ByteArrayInputStream(byteBuffer);
AudioInputStream audioInputStream;
audioInputStream = new AudioInputStream(bais, format,buffer.length);
AudioSystem.write(audioInputStream, AudioFileFormat.Type.WAVE, out);

12 audioInputStream.close();

Once the WAVE file is stored to disc you can listen to it using about any media player.
This is a bit of a drag so another option is to send the sound to the speakers directly. To
get this working you need a, for the Java subsystem, correctly configured default sound
card2.

Listing 5: Play a buffer

SourceDataLine line;
DataLine.Info info;

3 info = new DataLine.Info(SourceDataLine.class, format);
line = (SourceDataLine) AudioSystem.getLine(info);
line.open(format);
line.start();

1More information can be found on this webpage: http://www-mmsp.ece.mcgill.ca/
documents/audioformats/wave/wave.html

2By default the Java Runtime provided by Oracle or Sun does not play nice with PulseAudio on
Linux. To alliviate this problem see the tutorial here: http://tarsos.0110.be/artikels/
lees/PulseAudio_Support_for_Sun_Java_6_on_Ubuntu

6

http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/wave.html
http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/wave.html
http://tarsos.0110.be/artikels/lees/PulseAudio_Support_for_Sun_Java_6_on_Ubuntu
http://tarsos.0110.be/artikels/lees/PulseAudio_Support_for_Sun_Java_6_on_Ubuntu

line.write(byteBuffer, 0, byteBuffer.length);
8 line.close();

With the basics covered we can continue with operations on sound.

2 Operations on Sound

Operations on sound are commonly done in blocks. Operations on individual samples
are most of the time not efficient nor practical. E.g. if you would want to estimate the
frequency of audio you would need at least one complete period of the signal, surely
more than one sample.

For most standard operations, like filtering or an echo, a block size of 1024 samples
is common. With the default sample rate of 44.1kHz this means that each operation
is done on a block of audio of 1024/44.1kHz = 23.21ms. This block size provides
a practical trade-off between computational performance, update speed and usability.
Depending on the operation, larger block sizes might add a too large delay, smaller ones
might not provide enough audio-information to be able to perform the wanted operation.

Chaining operations is also common. An architecture that allows a chain of arbitrary
operations on audio blocks of arbitrary size results in a flexible processing pipeline. These
concepts are implemented in the TarsosDSP audio library. The following examples are
excerpts from the library and illustrate some of those basic ideas. You should be able
to translate the concepts to another platform or environment.

2.1 Sound Detection

This section describes how to implement a program that reacts to the presence of sound:
when the sound level reaches a certain threshold the algorithm sends a notification. This
functionality can e.g. be used to implement a burglar alarm system.

A sound detection algorithm has to calculate the energy of the signal. Audio signal
energy is commonly expressed in decibel sound pressure level (dBSPL), a logarithmic
unit. Since the human ear has a large dynamic range3 a logarithmic unit is practical.
To calculate the dBSPL level of a buffer b of length n use the following formula:

20 log10

√√√√ n∑
i=0

b[i]

n

For this applications the size of the buffer does not matter that much. The size should
span some time to make the measurement more meaningful but if the buffer is too large
the response time of the algorithm suffers, e.g. a buffer of 10240 samples gives a minimal
delay of 232ms at 44100Hz. For this application buffers from 512 to 4192 samples make
sense (causing a delay from 12 to 95ms).

3The ratio of the quietest sound the ear can hear and the loudest the ear can bear is about 1012.

7

The flow of the program is straightforward. Each block of audio is analyzed and a
decibel value is calculated. If the value reaches a certain threshold sound is present,
otherwise silence is assumed. With the TarsosDSP library this can be implemented as
follows:

Listing 6: Detecting sound or silence

// create a new dispatcher
2 AudioDispatcher dispatcher;
dispatcher= AudioDispatcher.fromDefaultMicrophone(1024, 0);
dispatcher.addAudioProcessor(new AudioProcessor() {

float threshold = -70;//dB
@Override

7 public boolean process(AudioEvent audioEvent) {
float[] buffer = audioEvent.getFloatBuffer();
double level = soundPressureLevel(buffer);
if(level > threshold){

System.out.println("Sound detected.");
12 }

return true;
}

@Override
17 public void processingFinished() {}

/**
* Returns the dBSPL for a buffer.

*/
22 private double soundPressureLevel(final float[] buffer) {

double power = 0.0D;
for (float element : buffer) {
power += element * element;

}
27 double value = Math.pow(power, 0.5)/ buffer.length;;

return 20.0 * Math.log10(value);
}

});

2.2 Echo Effect

As an example of a simple audio processing operation an echo effect, a delay, is imple-
mented. The idea of this section is, next to showing how an echo effect works, to explain
audio manipulation by processing blocks.

2.3 Pitch Detection

TarsosDSP implements several pitch detection methods. YIN [2], the McLeod Pitch
Method[5] and the Dynamic Wavelet pitch estimation algorithm [4]

8

Input +

Delay

Gain

Output

Figure 4: Block diagram representing a delay audio effect. The input is mixed with
delayed and scaled output.

2.4 Time-Scale Modification in Time Domain

TarsosDSP contains an implementation of the time stretching algorithm described in [8],
it can playback audio quicker or slower without affecting changing pitch. Slow playback
is e.g. very practical to transcribe the melody of a song.

2.5 Percussion Detection

The onset detector implementation is based on a VAMP plugin example by Chris Can-
nam at Queen Mary University, London. The method is described in [1].

2.6 Filtering

In the be.hogent.tarsos.dsp.filters package several frequency filters can be
found. With a high pass filter, audio with frequencies above a certain threshold are
kept. A low pass filter does the reverse, audio with frequencies below a threshold is
kept. Together they can create a band pass filter which can e.g. be constructed to focus
on the melodic range of a song and ignore the rest.

3 Utility functions

3.1 Write a WAV-file

3.2 Audio Playback

3.3 Interrupt a loop

3.4 Fourier Analysis

The FFT implementation used within TarsosDSP is by Piotr Wendykier and is included
in his JTransforms library. JTransforms is the first, open source, multithreaded FFT
library written in pure Java.

This document is a work in progress, for more information see the source code on
https://github.com/JorenSix/TarsosDSP ;).

9

https://github.com/JorenSix/TarsosDSP

3.5 Audio Visualisation or: How I Learned to Stop Worrying and Love the
DataLine Object

4 Pitch Detection

References

[1] Dan Barry, Derry Fitzgerald, Eugene Coyle, and Bob Lawlor. Drum Source Separa-
tion using Percussive Feature Detection and Spectral Modulation. In Proceedings of
the Irish Signals and Systems Conference (ISSC) 2005 conference, 2005.

[2] Alain de Cheveigné and Kawahara Hideki. Yin, a fundamental frequency estimator
for speech and music. The Journal of the Acoustical Society of America, 111(4):1917–
1930, 2002.

[3] IBM and Microsoft. Multimedia Programming Interface and Data Specifications 1.0.
Microsoft Press, 1991.

[4] Eric Larson and Ross Maddox. Real-Time Time-Domain Pitch Tracking Using
Wavelets. 2005.

[5] Philip McLeod. Fast, accurate pitch detection tools for music analysis. PhD thesis,
University of Otago. Department of Computer Science, 2009.

[6] Ken C. Pohlmann. Principles of Digital Audio / Ken C. Pohlmann. Sams, Indi-
anapolis :, 2nd. ed. edition, 1989.

[7] C. E. Shannon. Communication in the Presence of Noise. Proceedings of the IRE,
37(1):10–21, January 1949.

[8] Werner Verhelst and Marc Roelands. An overlap-add technique based on waveform
similarity (wsola) for high quality time-scale modification of speech. In proceedings
of ICASSP-93, pages 554–557, 1993.

10

	Sampled Sound Using Java
	Audio buffers in Java
	And Then There Was …Sound

	Operations on Sound
	Sound Detection
	Echo Effect
	Pitch Detection
	Time-Scale Modification in Time Domain
	Percussion Detection
	Filtering

	Utility functions
	Write a WAV-file
	Audio Playback
	Interrupt a loop
	Fourier Analysis

