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The main goal of this text is to bridge the gap between a mathematical
description of a digital signal process and a working implementation. The
text starts with calculating sound buffers, then proceeds to illustrate audio
output and explains the connection between the two. Then it proceeds with
operations on sound. This text is meant to be accompanying releases of the
TarsosDSP audio processing library: it should clarify the concepts used in
the source code.
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1 Introduction

TarsosDSP is a Java library for audio processing. Its aim is to provide an easy-to-use
interface to practical music processing algorithms implemented, as simply as possible, in
pure Java and without any other external dependencies. This text serves two goals: it
serves as a practical introduction into Music Information Retrieval (MIR) techniques for
computer science students, and as documentation for the TarsosDSP library. The text
assumes familiarity with object oriented programming constructs and a good knowledge
of a programming language of the C-family, like Java. The concepts used should be
transferable to other programming languages, or platforms as well.

TarsosDSP features implementation of the following algorithms. For each algorithm
there is an example application1 available.

• TarsosDSP was originally conceived as a library for pitch estimation, therefore
it contains several pitch estimators: YIN [2], MPM [8], AMDF[10]2, and an es-
timator based on dynamic wavelets[6]. There are two YIN implementations, one
remains within the comforts of the time domain, the other calculates convolution
in frequency domain3.

• Three onset detectors are provided. One described in [1], another is used by the
BeatRoot system[3]. The algorithm described by [4] is also implemented.

• The WSOLA time stretch algorithm[13], which allows to alter the speed of an
audio stream without altering the pitch is included. On moderate time stretch
factors - 80%-120% of the original speed - only limited audible artifacts are notice-
able.

• A resampling algorithm based on [12] and the related open source resample soft-
ware package4.

• A pitch shifting algorithm, which allows to change the pitch of audio without
affecting speed, is formed by chaining the time-stretch algorithm with the resample
algorithm.

• As examples of audio effects, TarsosDSP contains a delay and flanger effect.
Both are implemented as minimalistic as possible.

• Several IIR-filters are included. A single pass and four stage low pass filter, a
high pass filter, and a band pass filter.

• TarsosDSP also allows audio synthesis and includes generators for sine waves and
noise. Also included is a Low Frequency Oscillator (LFO) to control the amplitude
of the resulting audio.

1http://tarsos.0110.be/tag/TarsosDSP
2Partial implementation provided by Eder Souza
3The YIN FFT implementation was kindly contributed by Matthias Mauch
4Resample 1.8.1 can be found on the digital audio resampling home page https://ccrma.stanford.
edu/˜jos/resample/, maintained by Julius O. Smith
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1.1 Developing TarsosDSP

If you are reading this text your are probably interested in the source code of TarsosDSP,
either for extending the library or to use the source code as a reference. The project is
hosted on GitHub5. Contributions to TarsosDSP are more than welcome, if you have a
an algorithm to add or find a bug, do not hesitate to send me a message6.

TarsosDSP uses the Apache Aant7 build system. The instructions below detail how
you can build from source. When everything runs correctly you should be able to run all
example applications and have the latest version of the TarsosDSP library for inclusion
in your projects. Also the Javadoc documentation for the API should be available.

The libraries source code is separated in several folders:

• src contains the source files of TarsosDSP libraries.

– src/core contains the main algorithms and core functionality

– src/examples this directory contain example applications, most with Java
Swing user interface.

– src/jvm runtime specific audio input/output functions for the Java Virtual
Machine can be found here.

– src/android runtime specific audio input/output functions for the Android
runtime (Dalvik, ART) can be found here.

– src/patcher runtime specific audio input/output functions for patcher en-
vironments like Pure Data or Max MSP can be found here.

– src/test contains unit tests for some of the DSP functionality.

• doc contains help documentation for DSP library

• lib contains libraries that are needed to run unit tests and to run TarosDSP in a
patcher environment like MaxMSP or Pure Data.

• build contains ANT build files. Either to build Java documentation or runnable
JAR-files for the example applications.

To make development with eclipse easy, first exclude the src folder as source folder
and then include the subdirectories src as source folders.

5https://github.com/JorenSix/TarsosDSP
6mailto:joren.six@ugent.be
7http://ant.apache.org/
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2 Sampled Sound Using Java

To process sound digitally some kind of conversion is needed from an analog to a digital
sound signal. This conversion is done by an ADC: an analog to digital converter. An
ADC has many intricate properties, making sure no information is lost during the con-
version. For the principle of audio processing the most important ones are the sampling
rate and bit depth [9].

The sampling rate measures samples per second, it is defined in Hertz (Hz). The
Nyquist-Shannon sampling theorem[11] states that you need to sample at twice the max-
imum frequency of the information you want to convey. If lower sampling rates are used,
part of the information is lost. Speech is contained in the frequency range from 30Hz to
3000Hz. Applying Nyquist-Shannon, a sampling rate of 6kHz should be enough. Some
telephone systems use 8kHz, which is perfect for speech signals.

The human ear is capable of detecting sounds between about 20Hz and 20kHz, de-
pending from person to person. Sampling musical signals at about twice the maximum
hearing frequency makes sense. 44100Hz, 48000Hz are common sampling rates for mu-
sical information (20kHz × 2 < 44.1kHz). 8

The bit depth is the number of bits used to represent the value of a sample. Using
signed integers of 16 bits is common practice. The following example shows how these
concepts translate to the Java programming language. Bit depths of 24 bits or more, and
sampling rates of 96kHz or 192kHz very rarely offer any benefits for music consumers9.
There is, however, an advantage for music producers to use these formats: while mixing,
mending and molding music a larger dynamic range (bit depth) and sample rate prevent
quality loss.

2.1 Audio buffers in Java

In this section the theoretical concepts of sampling rate and bit depth are translated to
practical programming constructs. This is done by using one of the most simple audio
signals, sine wave. A sine wave is characterized by a frequency f and an amplitude a.
Equation 1 shows a mathematical representation of this simple audio signal.

f(x) = a× sin(2πf) (1)

The sine wave is depicted in Figure 1. The continuity of the signal, theoretically there
are an infinite amount of points between [0, 2π], makes it impossible to represent within
a digital system. The signal needs to be sampled.

A sampled sine wave, useful for signal processing can be seen in Figure 2. Conceptually,
sampling a signal means assigning each of the infinite amount of points to a finite number
of bins in a grid. The sampling rate defines the horizontal granularity of the grid, the
bit depth defines the vertical granularity. A sample rate of 44.1kHz and a bit depth of
16bits creates a fine enough grid for music.

8For the more visually inclined, these concepts are also explained in A Digital Media Primer for Geeks
by Monty of the Xiph foundation: https://www.xiph.org/video/vid1.shtml

9See e.g. http://people.xiph.org/˜xiphmont/demo/neil-young.html
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f(x)

x

Figure 1: Continuous sine wave

f(x)

x

Figure 2: Sampled sine wave

The listing 6 shows how equation 1 translates to source code. The first four lines
define the properties of the sampled wave, the frequency, amplitude, sample rate, and
duration. For performance reasons 2πf is calculated before the loop starts, on line 5.
Line six initializes the buffer, where the audio information is stored. The for loop (lines
7 - 10) constuct is used to calculate the value of every sample.

Listing 1: A sampled sine wave

1 double sampleRate = 44100.0;
double frequency = 440.0;
double amplitude = 0.8;
double seconds = 2.0;
double twoPiF = 2 * Math.PI * frequency;

6 float[] buffer = new float[(int) (seconds * sampleRate)];
for (int sample = 0; sample < buffer.length; sample++) {

double time = sample / sampleRate;
buffer[sample] = (float) amplitude * Math.sin(twoPiF * time);

}

After executing the code in Listing 6 the buffer contains a two seconds long pure tone
of 440Hz, sampled at 44.1kHz. 440Hz is chosen because it is used as the general tuning
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standard for musical pitch. On line 9, each sample is calculated using the Math.sin
function and is converted to a float following the advice found in the Java Language
Basics Tutorial10:

It is recommended to use a float (instead of double) if you need to save
memory in large arrays of floating point numbers. This data type should
never be used for precise values, such as currency.

Pure sine tones are not commonly found in the wild. Most sounds in the real world
have a rich harmonic spectrum. The following example shows a sound with one harmonic
at 6 times the base frequency. The mathematical representation can be seen in equation
2. The example could be expanded with more harmonics. If you choose the harmonics
carefully, a realistic sustained flute sound could be synthesized, only by adding more
harmonics.

f(x) = 0.8× sin(2πf) + 0.2× sin(2π6f) (2)

f(x)

x

f(x)

x

Figure 3: A continuous and discrete complex wave representing equation 2.

Figure 5 shows continuous and sampled versions of the wave represented by equation
2. Interesting to note is the visual superposition of the harmonic onto the wave with the
base frequency. This superposition is the result of the addition in equation 2. Creating
a buffer with this information:

10http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html

7

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html


Listing 2: A complex wave buffer

double sampleRate = 44100.0;
double seconds = 2.0;

double f0 = 440.0;
5 double amplitude0 = 0.8;
double twoPiF0 = 2 * Math.PI * f0;

double f1 = 6 * f0;
double amplitude1 = 0.2;

10 double twoPiF1 = 2 * Math.PI * f1;

float[] buffer = new float[(int) (seconds * sampleRate)];
for (int sample = 0; sample < buffer.length; sample++) {

double time = sample / sampleRate;
15 double f0Component = amplitude0 * Math.sin(twoPiF0 * time);

double f1Component = amplitude1 * Math.sin(twoPiF1 * time);
buffer[sample] = (float) (f0Component + f1Component);

}

Line 17 of listing 2 shows how the two frequency components are being summed up,
resulting in a buffer with the correct audio information. The next step is to convert the
float buffer into pulse code modulated (PCM) bytes, which are understood by e.g. a
sound card.

2.2 And Then There Was . . . Sound

A conversion step is needed before the sound can be heard. The float buffer contains
numbers in the range [−1.0, 1.0]. Those need to be mapped to e.g. 16bit signed little
endian PCM. This can be done by multiplying with b(216−1)/2c = 32767. Every sample
is then 16 bits or two bytes, each sample is converted to two bytes. In Java lingo: the
byte array needs to be twice the length of the float array.

Listing 3: Converting floats to bytes

final byte[] byteBuffer = new byte[buffer.length * 2];
2 int bufferIndex = 0;
for (int i = 0; i < byteBuffer.length; i++) {

final int x = (int) (buffer[bufferIndex++] * 32767.0);
byteBuffer[i] = (byte) x;
i++;

7 byteBuffer[i] = (byte) (x >>> 8);
}

To make the sound audible it can be written to a WAVE file. A WAVE file consists of
a header followed by the sound data. The sound data is nothing more or less than the
PCM format we calculated. The WAVE file header11 format stems from the time that

11More information can be found on this webpage:
http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/wave.html
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Microsoft and IBM were still best friends, it is defined in a joint specification[5]. Writing
headers is a bit boring luckily there are a few utility classes available in the standard
Java library in the javax.sound.sampled package which make this task effortless:

Listing 4: Writing a WAV-file

File out = new File("out.wav");
2 boolean bigEndian = false;
boolean signed = true;
int bits = 16;
int channels = 1;
AudioFormat format;

7 format = new AudioFormat(sampleRate, bits, channels, signed, bigEndian);
ByteArrayInputStream bais = new ByteArrayInputStream(byteBuffer);
AudioInputStream audioInputStream;
audioInputStream = new AudioInputStream(bais, format,buffer.length);
AudioSystem.write(audioInputStream, AudioFileFormat.Type.WAVE, out);

12 audioInputStream.close();

Once the WAVE file is stored to disc you can listen to it using about any media player.
This is a bit of a drag so another option is to send the sound to the speakers directly. To
get this working you need a, for the Java subsystem, correctly configured default sound
card12.

Listing 5: Play a buffer

SourceDataLine line;
DataLine.Info info;

3 info = new DataLine.Info(SourceDataLine.class, format);
line = (SourceDataLine) AudioSystem.getLine(info);
line.open(format);
line.start();
line.write(byteBuffer, 0, byteBuffer.length);

8 line.close();

Within TarsosDSP conversion from bytes to samples is done automatically, but it
remains important to know what happens behind the scenes e.g. to look for perfor-
mance bottlenecks. Once the basic conversions are covered, the next step is to perform
operations on sound.

12By default the Java Runtime provided by Oracle or Sun does not play nice with PulseAudio on
Linux. To alliviate this problem see the tutorial here: http://tarsos.0110.be/artikels/
lees/PulseAudio_Support_for_Sun_Java_6_on_Ubuntu
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3 Operations on Sound

Operations on sound are commonly done in blocks. Operations on individual samples
are most of the time not efficient nor practical. E.g. if you would want to estimate the
frequency of audio you would need at least one complete period of the signal, surely
more than one sample.

For most standard operations, like filtering or an echo, a block size of 102413 samples
is common. With the default sample rate of 44.1kHz this means that each operation
is done on a block of audio of 1024/44.1kHz = 23.21ms. This block size provides
a practical trade-off between computational performance, update speed and usability.
Depending on the operation, larger block sizes might add a too large delay, smaller ones
might not provide enough audio-information to be able to perform the wanted operation.

Chaining operations is also common. An architecture that allows a chain of arbitrary
operations on audio blocks of arbitrary size results in a flexible processing pipeline. These
concepts are implemented in the TarsosDSP audio library. Figure 4 shows the processing
pipeline. Currently, only single channel audio is allowed, which helps to makes the
processing chain extremely straightforward14. A schematic representation can be found
in Figure 4. The source of the audio is a file, a microphone, or an empty stream. The
AudioDispatcher chops incoming audio in blocks of a requested number of samples,
with a defined overlap. Subsequently the blocks of audio are scaled to a float in
the range [-1,1], as mentioned in Section 2.1. The blocks are encapsulated in an
AudioEvent object which contains a pointer to the audio, the start time in seconds,
and has some auxiliary methods, e.g. to calculate the energy of the audio block.

Audio Dispatcher Event Processor

Output

Figure 4: A schematic representation of the TarsosDSP processing pipeline. The incom-
ing audio (left) is divided into blocks. Each block is encapsulated in an Event
object by the Dispatcher. The event objects flow through one or more
Processor blocks, which may or may not alter the audio and can generate
output (e.g. pitch estimations). Dotted lines represent optional flows.

The AudioDispatcher sends the AudioEvent through a series of AudioProcessor
objects which execute an operation on audio. The core of the algorithms are contained

13The size of a block is often a power of two, mainly because this eases implementation of several
algorithms, either in hardware or software. E.g. the FFT algorithm is easy to implement with blocks
the size of a power of two. In TarsosDSP the FFT algorithm allows other block sizes as well.

14Actually multichannel audio is accepted as well, but it is automatically downmixed to one channel
before it is send through the processing pipeline
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in these AudioProcessor Note that the size of a block of audio can change during the
processing flow. This architecture supports three types of operations on sound:

Analysis
During sound analysis a certain feature of audio is extracted. The sound itself is not
altered. Examples of analysis operations are estimating pitch, calculating loudness
(see section 3.1), and detecting onsets. Some analysis operations need only one
block of audio, like estimating pitch. Other operations compare the current block
of audio with a few previous blocks, this is done in some onset detection methods.
A third kind of audio analysis operations can not operate in real-time, since they
need information on previous and future blocks of audio. For example, reliable
beat tracking can only be done by post-processing onsets.

Audio Effects
An operation is called an effect when it uses an audio stream as input and alters it
in a certain way. Examples of audio effects include flanger, filters, pitch shifting,
phaser, echo (see section 3.2), and chorus. Time stretching, altering the speed of
audio without affecting its pitch, is a special kind of audio effect since it changes
the length of the audio (block), while the others do not.

Synthesis
When audio is generated using only a mathematical construct, or prerecorded
samples, an audio synthesis operation takes place. The main difference with an
effect is that it is not dependent on audio input. Generating random noise is one
of the more simple synthesis operations.

The following examples are excerpts from the library and illustrate how each operation
type is implemented within TarsosDSP.

3.1 Audio Analysis - Sound Detection

This section describes how to implement a program that reacts to the presence of sound:
when the sound level reaches a certain threshold the algorithm sends a notification. This
functionality can e.g. be used to implement a burglar alarm system.

A sound detection algorithm has to calculate the energy of the signal. Audio signal
energy is commonly expressed in decibel sound pressure level (dBSPL), a logarithmic
unit. Since the human ear has a large dynamic range15 a logarithmic unit is practical.
To calculate the dBSPL level of a buffer b of length n use the following formula:

20 log10

√√√√ n∑
i=0

b[i]

n

15The ratio of the quietest sound the ear can hear and the loudest the ear can bear is about 1012.
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For this applications the size of the buffer does not matter that much. The size should
span some time to make the measurement more meaningful but if the buffer is too large
the response time of the algorithm suffers, e.g. a buffer of 10240 samples gives a minimal
delay of 232ms at 44100Hz. For this application buffers from 512 to 4192 samples make
sense (causing a delay from 12 to 95ms).

The flow of the program is straightforward. Each block of audio is analyzed and a
decibel value is calculated. If the value reaches a certain threshold sound is present,
otherwise silence is assumed. With the TarsosDSP library this can be implemented as
follows:

Listing 6: Detecting sound or silence

// create a new dispatcher
2 AudioDispatcher dispatcher;
dispatcher= AudioDispatcher.fromDefaultMicrophone(1024, 0);
dispatcher.addAudioProcessor(new AudioProcessor() {

float threshold = -70;//dB
@Override

7 public boolean process(AudioEvent audioEvent) {
float[] buffer = audioEvent.getFloatBuffer();
double level = soundPressureLevel(buffer);
if(level > threshold){

System.out.println("Sound detected.");
12 }

return true;
}

@Override
17 public void processingFinished() {}

/**
* Returns the dBSPL for a buffer.

*/
22 private double soundPressureLevel(final float[] buffer) {

double power = 0.0D;
for (float element : buffer) {
power += element * element;

}
27 double value = Math.pow(power, 0.5)/ buffer.length;;

return 20.0 * Math.log10(value);
}

});

3.2 Audio Effects - Echo

As an example of a simple audio processing operation an echo effect, a delay, is imple-
mented. The idea of this section is, next to showing how an echo effect works, to explain
audio manipulation by processing blocks.
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Input +

Delay

Gain

Output

Figure 5: Block diagram representing a delay audio effect. The input is mixed with
delayed and scaled output.

3.3 Synthesis - Sawtooth wave

3.4 Pitch Detection

TarsosDSP implements several pitch detection methods. YIN [2], the McLeod Pitch
Method[7] and the Dynamic Wavelet pitch estimation algorithm [6]

3.5 Time-Scale Modification in Time Domain

TarsosDSP contains an implementation of the time stretching algorithm described in
[13], it can playback audio quicker or slower without affecting changing pitch. Slow
playback is e.g. very practical to transcribe the melody of a song.

3.6 Percussion Detection

The onset detector implementation is based on a VAMP plugin example by Chris Can-
nam at Queen Mary University, London. The method is described in [1].

3.7 Filtering

In the be.hogent.tarsos.dsp.filters package several frequency filters can be
found. With a high pass filter, audio with frequencies above a certain threshold are
kept. A low pass filter does the reverse, audio with frequencies below a threshold is
kept. Together they can create a band pass filter which can e.g. be constructed to focus
on the melodic range of a song and ignore the rest.

This document is a work in progress, for more information see the source code on
https://github.com/JorenSix/TarsosDSP ;).
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