Welcome

Hi, I'm Joren. Welcome to my website. I'm a researcher in the field of Music Informatics, Music Information Retrieval, and Computational Ethnomusicology. Here you can find a record of my research and other projects I have been working on. Learn more »

Contact

Joren Six
joren.six@ugent.be
University Ghent, IPEM

~ International Symposium on Computational Ethnomusicological Archiving

This weekend the University Hamburg – Institute for Systematic Musicology and more specifically Christian D. Koehn organized the International Symposium on Computational Ethnomusicological Archiving. The symposium featured a broad selection of research topics (physical modelling of instruments, MIR research, 3D scanning techniques, technology for (re)spacialisation of music, library sciences) which all had a relation with archiving musics of the world:

How could existing digital technologies in the field of music information retrieval, artificial intelligence, and data networking be efficiently implemented with regard to digital music archives? How might current and future developments in these fields benefit researchers in ethnomusicology? How can analytical data about musical sound and descriptive data about musical culture be more comprehensively integrated?

I was able to attend the symposium and contributed with a talk titled Challenges and opportunities for computational analysis of wax cylinders and by chairing a panel discussion. The symposium was kindly sponsored by the VolkswagenStiftung. The talk had the following abstract:

In this presentation we describe our experience of working with computational analysis on digitized wax cylinder recordings. The audio quality of these recordings is limited which poses challenges for standard MIR tools. Unclear recording and playback speeds further hinder some types of audio analysis. Moreover, due to a lack of systematical meta-data notation it is often uncertain where a single recording originates or when exactly it was recorded. However, being the oldest available sound recordings, they are invaluable witnesses of various musical practices and they are opportunities to improve the understanding of these practices. Next to sketching these general concerns, we present results of the analysis of pitch content of 400 wax cylinder recordings from Indiana University (USA) and from the Royal Museum from Central Africa (Belgium). The scales of the 400 recordings are mapped and analyzed as a set. It is found that the fifth is almost always present and that scales with four and five pitch classes are organized similarly and differ from those with six and seven pitch classes, latter center around intervals of 170 cents, and former around 240 cents.


~ 4th International Digital Libraries for Musicology workshop (DLfM 2017)

DLFM logoI have contributed to the 4th International Digital Libraries for Musicology workshop (DLfM 2017) which was organized in Shanghai, China. It was a satellite event of the ISMIR 2017 conference. Unfortunately I did not mange to find funding to attend the workshop, I did however contribute as co-author to two proceeding papers. Both were presented by Reinier de Valk (thanks again).

MIRchiving: Challenges and opportunities of connecting MIR research and digital music archives

By Reinier de Valk (DANS), Anja Volk (Utrecht University), Andre Holzapfel (KTH Royal Institute of Technology) , Aggelos Pikrakis (University of Piraeus), Nadine Kroher (University of Seville – IMUS) and Joren Six (Ghent University – IPEM). Next to the version of record there is also an author version available of the contribution titled MIRchiving: Challenges and opportunities of connecting MIR research and digital music archives.

This study is a call for action for the music information retrieval (MIR) community to pay more attention to collaboration with digital music archives. The study, which resulted from an interdisciplinary workshop and subsequent discussion, matches the demand for MIR technologies from various archives with what is already supplied by the MIR community. We conclude that the expressed demands can only be served sustainably through closer collaborations. Whereas MIR systems are described in scientific publications, usable implementations are often absent. If there is a runnable system, user documentation is often sparse—-posing a huge hurdle for archivists to employ it. This study sheds light on the current limitations and opportunities of MIR research in the context of music archives by means of examples, and highlights available tools. As a basic guideline for collaboration, we propose to interpret MIR research as part of a value chain. We identify the following benefits of collaboration between MIR researchers and music archives: new perspectives for content access in archives, more diverse evaluation data and methods, and a more application-oriented MIR research workflow.

Applications of duplicate detection: linking meta-data and merging music archives: The experience of the IPEM historical archive of electronic music

By Federica Bressan, Joren Six and Marc Leman (Ghent University – IPEM). Next to the version of record there is also an author version available of the contribution titled Applications of duplicate detection: linking meta-data and merging music archives: The experience of the IPEM historical archive of electronic music.

This work focuses on applications of duplicate detection for managing digital music archives. It aims to make this mature music information retrieval (MIR) technology better known to archivists and provide clear suggestions on how this technology can be used in practice. More specifically applications are discussed to complement meta-data, to link or merge digital music archives, to improve listening experiences and to re-use segmentation data. The IPEM archive, a digitized music archive containing early electronic music, provides a case study.

The full DLfM 2017 proceedings are published by ACM.


~ ESCOM 2017 - Regularity and asynchrony when tapping to tactile, auditory and combined pulses

ESCOM 2017 LogoThe 25th anniversary edition of the ESCOM 2017 Conference conference was organised in August 2017 by the IPEM research group from Ghent University. ESCOM is the conference of the European Society for the Cognitive Sciences of Music had two contributions to the conference.

The first was a collaboration with Frank Desmet, Micheline Lesaffre, Nathalie Ehrlé and Séverine Samson. The contribution is titled Multimodal Analysis of Synchronization Data from Patients with Dementia. It details a famework to analyze data in an experiment for patients with dementia.

For the second contribution I was the main researcher. It is the result of a project with students of the systematic musicology course at Ghent University (Laura Arens, Hade Demoor, Thomas Kint) . The contribution is called Regularity and asynchrony when tapping to tactile, auditory and combined pulses

The presentation details a multi sensory tapping task with the aim to develop an assistive technology for dancers.

  • ESCOM 2017 presentation

    ESCOM 2017 presentation


~ AES 2017 - A framework to provide fine-grained time-dependent context for active listening experiences

The 2017 AES international conference on semantic audio was organized at ISS Fraunhofer, Erlangen, Germany. As the birthplace of the MP3 codec, it is holy ground, a stop that can not be skipped on the itinerary of an audio engineers pilgrimage of life. At the conference I presented A framework to provide fine-grained time-dependent context for active listening experiences with a poster (pdf, inkscape svg).

The active listening demo movie above should explain the aim system succinctly. It shows two different ways to provide ‘context’ to audio playing in the room. In the first instance beats information is used to synchronize smartphones and flash the screen, the second demo shows a tactile feedback device responding to beats. The device is a soundbrenner pulse tactile metronome and was kindly sponsored by the company that sells these.

  • Poster session

    Poster session

  • Better group photo, arguably

    Better group photo, arguably

  • Group photo

    Group photo


~ Computational Ethnomusicology: Methodologies for a New Field

Comp ethno workshop From 27 to 31 March 2017 I have attended a workshop on Computational Ethnomusicology: Methodologies for a New Field at the Lorentz Center in Leiden. The workshop format was aimed at creating time for interdisciplinary discussion.

It was attended by a mix of (Ethno)musicologists, archivists, computer scientists and people identifying themselves as more than one of these categories by varying degrees. This mix ensured a healthy discussion and talks by Frans Wiering, Willard McCarthy, Emilia Gomez, and may more provided ample source material to discuss. These discussions ranged from the abstracts around schemata down to concrete of software tools for archive management.

On a more personal side the workshop did provide useful insights to contextualize my research and help form ideas that can be condensed in my PhD dissertation.


~ ESP32 Thing as xOSC alternative

ESP32 Thing The xOSC board by x-io technologies looks like a very nice solution in many interactive wireless setups. Judging from the specifications and documentation it offers a lot of value. It is basically a small WiFi transmitter with some sensors and a battery attached to it. The board also has some drawbacks. 1) It is expensive at about € 180. This is especially problematic if you need about five or so for your application.2) It seems that it is also hard to add extra sensors via SPI or I²C. 3)The battery needs to be removed to charge, which makes it harder to build into a fixed enclosure. This post describes an alternative based on the ESP32 platform that addresses these shortcomings.

The ESP32 is a micro-controller with a WiFi transmitter which can be programmed using the Arduino environment. Sparkfun has a thing called the ESP32 Thing which contains the ESP32 chip. It can be used to build an xOSC alternative.

  1. It costs about 20$, when you add a battery 5$ and a sensor 20$ (IMU) you end up with a 45$ price tag. The price of course depends on which exact sensor/battery you need for your application. A 500mAh lasts about two hours when sending 66 messages per second over WiFi (using UDP).
  2. The ESP32 Thing supports the Arduino environment which potentially allows you to use all available Arduino libraries and supported sensors. However, some libraries do contain hardware specific instructions which are often not ported yet. Since the hardware is rather new – large scale production started only 3 months ago – not many libraries have been ported. Fortunately a lot of libraries simply work without any changes. At hackaday they have been testing a few: ESP32 and Arduino libraries. I had success with the BNO55 library, it did not need any changes. The OSC library did need some small changes to operate as expected.
  3. The Thing contains a battery charging circuit. Once embedded into an enclosure the battery can stay in place. The software running on the device even keeps running when changing power sources.

Attached to this post you can find modifications to the Andriod OSC library that enable it to run on the ESP32: ESP32-Arduino-OSC-library together with a patch that sends random data over OSC. This should enable you to build an xOSC alternative.

Some drawbacks of the ESP32 is that the supporting software is quite immature. There is a Bluetooth chip on the ESP32 which is currently not supported in the Arduino environment. The setup can be somewhat challenging. The documentation can be improved. Some of the ESP32 Things seem to be unable to connect to old WiFi routers which can be problematic.

  • Graphical datasheet

    Graphical datasheet

  • ESP32 with battery and sensor.

    ESP32 with battery and sensor.

  • A signal from the ESP32

    A signal from the ESP32


~ Ipem at Opening Event Digital Week

Last Saturday, October eight 2016, IPEM was present at the opening event of the digital week. A small video report was made for VRT news, unfortunately our contribution did not make the cut.

Van 8 tot en met 16 oktober 2016 loopt de elfde editie van de De Digitale Week. Plaatselijke organisaties in heel Vlaanderen en Brussel organiseren tijdens deze week diverse laagdrempelige activiteiten waarbij het gebruik van multimedia centraal staat, steeds gratis of zeer goedkoop, en open voor zowel beginners als mensen met wat meer ervaring. Daarnaast loopt er tijdens de Digitale Week een grote publiciteitscampagne die aandacht vraagt voor de thema’s e-inclusie en mediawijsheid.

  • Overview of our installation

    Overview of our installation


~ IPEM at Parklife 2016

This weekend IPEM, the research institute in musicology of University Ghent, was present at Parklife 2016. Parklife is a music festival with a special focus on interactive music installations aimed at children. Two of those were provided by IPEM.

The first installation was a trampoline that triggered sounds. Two trampoline were provided with a pressure sensor. An Axoloti provides the sonic feedback. A simple but fun experience especially for younger children.

The second installation was more involved. It consisted of a bike – controlled by a first participant – that provided the speed of falling blocks that a second participant had to step on. When the second participant triggered the blocks on time a melody appeared. The video above makes it more clear.


~ Real-time signal synchronization with acoustic fingerprinting - A Master's Thesis By Ward Van Assche

During the last semester Ward wrote a Masters thesis titled Real-time signal synchronization with acoustic fingerprinting. For his thesis Marleen Denert and I served both as promoter.

The aim of the thesis was to design and develop a system to automatically synchronize streams of incoming sensor data in real-time. Ward followed up on an idea that was described in an article called Synchronizing Multimodal Recordings Using Audio-To-Audio Alignment. The extended abstract can be consulted. The remainder of the thesis is in Dutch.

For the thesis Ward developed a Max/MSP object to read data from sensors together with audio. Also provided by Ward is an object to synchronize audio and data in real-time. The objects are depicted above.


~ Connecting Musical Modules - Musical Hardware and Software Interfaces

Axoloti logo I have given a presentation at the the Newline conference, a yearly event organized by the Hackerspace Ghent. It was about:

“In this talk I will give a practical overview on how to connect hard- and software components for musical applications. Next to an overview there will be demos! Do you want to make a musical instrument using a light sensor? Use your smartphone as an input device for a synth? Or are you simply interested in simple low-latency communication between devices? Come to this talk! More concretely the talk will feature the Axoloti audio board, Teensy micro-controller with audio board, MIDI and OSC protocols, Android MIDI features and some sensors.”

During the presentation the hard and software components were demonstrated. More concretely an introduction was given to the following:

The presentation about DIY musical modules can be downloaded here.


Previous entries »