Articles Tagged 'Presentation'

~ International Symposium on Computational Ethnomusicological Archiving

This weekend the University Hamburg – Institute for Systematic Musicology and more specifically Christian D. Koehn organized the International Symposium on Computational Ethnomusicological Archiving. The symposium featured a broad selection of research topics (physical modelling of instruments, MIR research, 3D scanning techniques, technology for (re)spacialisation of music, library sciences) which all had a relation with archiving musics of the world:

How could existing digital technologies in the field of music information retrieval, artificial intelligence, and data networking be efficiently implemented with regard to digital music archives? How might current and future developments in these fields benefit researchers in ethnomusicology? How can analytical data about musical sound and descriptive data about musical culture be more comprehensively integrated?

I was able to attend the symposium and contributed with a talk titled Challenges and opportunities for computational analysis of wax cylinders and by chairing a panel discussion. The symposium was kindly sponsored by the VolkswagenStiftung. The talk had the following abstract:

In this presentation we describe our experience of working with computational analysis on digitized wax cylinder recordings. The audio quality of these recordings is limited which poses challenges for standard MIR tools. Unclear recording and playback speeds further hinder some types of audio analysis. Moreover, due to a lack of systematical meta-data notation it is often uncertain where a single recording originates or when exactly it was recorded. However, being the oldest available sound recordings, they are invaluable witnesses of various musical practices and they are opportunities to improve the understanding of these practices. Next to sketching these general concerns, we present results of the analysis of pitch content of 400 wax cylinder recordings from Indiana University (USA) and from the Royal Museum from Central Africa (Belgium). The scales of the 400 recordings are mapped and analyzed as a set. It is found that the fifth is almost always present and that scales with four and five pitch classes are organized similarly and differ from those with six and seven pitch classes, latter center around intervals of 170 cents, and former around 240 cents.


~ 4th International Digital Libraries for Musicology workshop (DLfM 2017)

DLFM logoI have contributed to the 4th International Digital Libraries for Musicology workshop (DLfM 2017) which was organized in Shanghai, China. It was a satellite event of the ISMIR 2017 conference. Unfortunately I did not mange to find funding to attend the workshop, I did however contribute as co-author to two proceeding papers. Both were presented by Reinier de Valk (thanks again).

MIRchiving: Challenges and opportunities of connecting MIR research and digital music archives

By Reinier de Valk (DANS), Anja Volk (Utrecht University), Andre Holzapfel (KTH Royal Institute of Technology) , Aggelos Pikrakis (University of Piraeus), Nadine Kroher (University of Seville – IMUS) and Joren Six (Ghent University – IPEM). Next to the version of record there is also an author version available of the contribution titled MIRchiving: Challenges and opportunities of connecting MIR research and digital music archives.

This study is a call for action for the music information retrieval (MIR) community to pay more attention to collaboration with digital music archives. The study, which resulted from an interdisciplinary workshop and subsequent discussion, matches the demand for MIR technologies from various archives with what is already supplied by the MIR community. We conclude that the expressed demands can only be served sustainably through closer collaborations. Whereas MIR systems are described in scientific publications, usable implementations are often absent. If there is a runnable system, user documentation is often sparse—-posing a huge hurdle for archivists to employ it. This study sheds light on the current limitations and opportunities of MIR research in the context of music archives by means of examples, and highlights available tools. As a basic guideline for collaboration, we propose to interpret MIR research as part of a value chain. We identify the following benefits of collaboration between MIR researchers and music archives: new perspectives for content access in archives, more diverse evaluation data and methods, and a more application-oriented MIR research workflow.

Applications of duplicate detection: linking meta-data and merging music archives: The experience of the IPEM historical archive of electronic music

By Federica Bressan, Joren Six and Marc Leman (Ghent University – IPEM). Next to the version of record there is also an author version available of the contribution titled Applications of duplicate detection: linking meta-data and merging music archives: The experience of the IPEM historical archive of electronic music.

This work focuses on applications of duplicate detection for managing digital music archives. It aims to make this mature music information retrieval (MIR) technology better known to archivists and provide clear suggestions on how this technology can be used in practice. More specifically applications are discussed to complement meta-data, to link or merge digital music archives, to improve listening experiences and to re-use segmentation data. The IPEM archive, a digitized music archive containing early electronic music, provides a case study.

The full DLfM 2017 proceedings are published by ACM.


~ ESCOM 2017 - Regularity and asynchrony when tapping to tactile, auditory and combined pulses

ESCOM 2017 LogoThe 25th anniversary edition of the ESCOM 2017 Conference conference was organised in August 2017 by the IPEM research group from Ghent University. ESCOM is the conference of the European Society for the Cognitive Sciences of Music had two contributions to the conference.

The first was a collaboration with Frank Desmet, Micheline Lesaffre, Nathalie Ehrlé and Séverine Samson. The contribution is titled Multimodal Analysis of Synchronization Data from Patients with Dementia. It details a famework to analyze data in an experiment for patients with dementia.

For the second contribution I was the main researcher. It is the result of a project with students of the systematic musicology course at Ghent University (Laura Arens, Hade Demoor, Thomas Kint) . The contribution is called Regularity and asynchrony when tapping to tactile, auditory and combined pulses

The presentation details a multi sensory tapping task with the aim to develop an assistive technology for dancers.

  • ESCOM 2017 presentation

    ESCOM 2017 presentation


~ Connecting Musical Modules - Musical Hardware and Software Interfaces

Axoloti logo I have given a presentation at the the Newline conference, a yearly event organized by the Hackerspace Ghent. It was about:

“In this talk I will give a practical overview on how to connect hard- and software components for musical applications. Next to an overview there will be demos! Do you want to make a musical instrument using a light sensor? Use your smartphone as an input device for a synth? Or are you simply interested in simple low-latency communication between devices? Come to this talk! More concretely the talk will feature the Axoloti audio board, Teensy micro-controller with audio board, MIDI and OSC protocols, Android MIDI features and some sensors.”

During the presentation the hard and software components were demonstrated. More concretely an introduction was given to the following:

The presentation about DIY musical modules can be downloaded here.


~ Lecture on MIR - Tone Scale Extraction - Acoustic Fingerprinting

This morning, the 30th of October 2015, I gave a lecture on Music Information Retrieval in general and two MIR-tasks in particular. The two more detailed tasks were tone scale analysis and acoustic fingerprinting.

A slide

During the lecture some live demonstrations were done with Panako and Tarsos. Also some examples from TarsosDSP were used. Excerpts of the music used is available here, this is especially interesting if you want to repeat the demos. Sonic visualizer, Music21 and MuseScore were also mentioned during the lecture.

The presentation about Music Information Retrieval and the handouts can be found here als well.


~ Audio Fingerprinting - Opportunities for digital musicology

The 27th of November, 2014 a lecture on audio fingerprinting and its applications for digital musicology will be given at IPEM. The lecture introduces audio fingerprinting, explains an audio fingerprinting technique and then goes on to explain how such algorithm offers opportunities for large scale digital musicological applications. Here you can download the slides about audio fingerprinting and its opportunities for digital musicology.

With the explained audio fingerprinting technique a specific form of very reliable musical structure analysis can be done. Below, in the figure section, an example of repetitive structure in the song Ribs Out is shown. Another example is comparing edits or versions of songs. Below, also in the figure section, the radio edit of Daft Punk’s Get Lucky is compared with the original version. Audio synchronization using fingerprinting is another application that is actively used in the field of digital musicology to align audio with extracted features.

Since acoustic fingerprinting makes structure analysis very efficiently it can be applied on a large scale (20k songs). The figure below shows that identical repetition is something that has been used more and more since the mid 1970’s. The trend probably aligns with the amount of technical knowledge needed to ‘copy and paste’ a snippet of music.

How much identical repetition is used in music, over the years

Fig: How much identical repetition is used in music, over the years.

The Panako audio fingerprinting system was used to generate data for these case studies. The lecture and this post are partly inspired by a blog post by Paul Brossier.

  • Spectral peak Acoustic fingerprinting system

    Spectral peak Acoustic fingerprinting system

  • Structure in Ribs Out

    Structure in Ribs Out

  • Radio edit vs. original of Daft Punk's Get Lucky

    Radio edit vs. original of Daft Punk's Get Lucky

  • How much identical repetition is used in a set of 20k songs.

    How much identical repetition is used in a set of 20k songs.


~ ISMIR 2014 - Panako - A Scalable Acoustic Fingerprinting System Handling Time-Scale and Pitch Modification

Panako poster At ISMIR 2014 i will present a paper on a fingerprinting system. ISMIR is the annual conference of the International Society for Music Information Retrieval is the world’s leading interdisciplinary forum on accessing, analyzing, and organizing digital music of all sorts. This years instalment takes place in Taipei, Taiwan. My contribution is a paper titled Panako – A Scalable Acoustic Fingerprinting System Handling Time-Scale and Pitch Modification, it will be presented during a poster session the 27th of October.

This paper presents a scalable granular acoustic fingerprinting system. An acoustic fingerprinting system uses condensed representation of audio signals, acoustic fingerprints, to identify short audio fragments in large audio databases. A robust fingerprinting system generates similar fingerprints for perceptually similar audio signals. The system presented here is designed to handle time-scale and pitch modifications. The open source implementation of the system is called Panako and is evaluated on commodity hardware using a freely available reference database with fingerprints of over 30,000 songs. The results show that the system responds quickly and reliably on queries, while handling time-scale and pitch modifications of up to ten percent.

The system is also shown to handle GSM-compression, several audio effects and band-pass filtering. After a query, the system returns the start time in the reference audio and how much the query has been pitch-shifted or time-stretched with respect to the reference audio. The design of the system that offers this combination of features is the main contribution of this paper.

The system is available, together with documentation and information on how to reproduce the results from the ISMIR paper, on the Panako website. Also available for download is the Panako poster, Panako ISMIR paper and the Panako poster.

  • General fingerprinter

    General fingerprinter

  • Fingerprint and modifications

    Fingerprint and modifications

  • Results after pitch shifting

    Results after pitch shifting

  • Results after time scale modification

    Results after time scale modification

  • Results after time stretching

    Results after time stretching


~ TarsosDSP Paper and Presentation at AES 53rd International conference on Semantic Audio

TarsosDSP will be presented at the AES 53rd International conference on Semantic Audio in London . During the conference both a presentation and demonstration of the paper TarsosDSP, a Real-Time Audio Processing Framework in Java, by Joren Six, Olmo Cornelis and Marc Leman, in Proceedings of the 53rd AES Conference (AES 53rd), 2014. From their website:

Semantic Audio is concerned with content-based management of digital audio recordings. The rapid evolution of digital audio technologies, e.g. audio data compression and streaming, the availability of large audio libraries online and offline, and recent developments in content-based audio retrieval have significantly changed the way digital audio is created, processed, and consumed. New audio content can be produced at lower cost, while also large audio archives at libraries or record labels are opening to the public. Thus the sheer amount of available audio data grows more and more each day. Semantic analysis of audio resulting in high-level metadata descriptors such as musical chords and tempo, or the identification of speakers facilitate content-based management of audio recordings. Aside from audio retrieval and recommendation technologies, the semantics of audio signals are also becoming increasingly important, for instance, in object-based audio coding, as well as intelligent audio editing, and processing. Recent product releases already demonstrate this to a great extent, however, more innovative functionalities relying on semantic audio analysis and management are imminent. These functionalities may utilise, for instance, (informed) audio source separation, speaker segmentation and identification, structural music segmentation, or social and Semantic Web technologies, including ontologies and linked open data.

This conference will give a broad overview of the state of the art and address many of the new scientific disciplines involved in this still-emerging field. Our purpose is to continue fostering this line of interdisciplinary research. This is reflected by the wide variety of invited speakers presenting at the conference.

The paper presents TarsosDSP, a framework for real-time audio analysis and processing. Most libraries and frameworks offer either audio analysis and feature extraction or audio synthesis and processing. TarsosDSP is one of a only a few frameworks that offers both analysis, processing and feature extraction in real-time, a unique feature in the Java ecosystem. The framework contains practical audio processing algorithms, it can be extended easily, and has no external dependencies. Each algorithm is implemented as simple as possible thanks to a straightforward processing pipeline. TarsosDSP’s features include a resampling algorithm, onset detectors, a number of pitch estimation algorithms, a time stretch algorithm, a pitch shifting algorithm, and an algorithm to calculate the Constant-Q. The framework also allows simple audio synthesis, some audio effects, and several filters. The Open Source framework is a valuable contribution to the MIR-Community and ideal fit for interactive MIR-applications on Android. The full paper can be downloaded TarsosDSP, a Real-Time Audio Processing Framework in Java

A BibTeX entry for the paper can be found below.

1
2
3
4
5
6
@inproceedings{six2014tarsosdsp,
  author      = {Joren Six and Olmo Cornelis and Marc Leman},
  title       = {{TarsosDSP, a Real-Time Audio Processing Framework in Java}},
  booktitle   = {{Proceedings of the 53rd AES Conference (AES 53rd)}}, 
  year        =  2014
}
  • AES53

    AES53

  • Constant-Q

    Constant-Q

  • Flanger

    Flanger

  • Pitch Shifting

    Pitch Shifting

  • Samping

    Samping


~ CIM 2012 - Revealing and Listening to Scales From the Past; Tone Scale Analysis of Archived Central-African Music Using Computational Means

Logo Universiteit UtrechtWhat follows is about the Conference on Interdisciplinary Musicology and the 15th international Conference of the Gesellschaft fur Musikfoschung. First this text will give information about our contribution to CIM2012: Revealing and Listening to Scales From the Past; Tone Scale Analysis of Archived Central-African Music Using Computational Means and then a number of highlights of the conference follow. The joint conference took place from the 4th to the 8th of september 2012.

In 2012, CIM will tackle the subject of History. Hosted by the University of Göttingen, whose one time music director Johann Nikolaus Forkel is widely regarded as one of the founders of modern music historiography, CIM12 aims to promote collaborations that provoke and explore new methods and methodologies for establishing, evaluating, preserving and communicating knowledge of music and musical practices of past societies and the factors implicated in both the preservation and transformation of such practices over time.

Revealing and Listening to Scales From the Past; Tone Scale Analysis of Archived Central-African Music Using Computational Means

Our contribution ton CIM 2012 is titled Revealing and Listening to Scales From the Past; Tone Scale Analysis of Archived Central-African Music Using Computational Means. The aim was to show how tone scales of the past, e.g. organ tuning, can be extracted and sonified. During the demo special attention was given to historic Central African tuning systems. The presentation I gave is included below and or available for download

Highlights

What follows are some personal highlights for the Conference on Interdisciplinary Musicology and the 15th international Conference of the Gesellschaft fur Musikfoschung. The joint conference took place from the 4th to the 8th of september 2012.

The work presented by Rytis Ambrazevicius et al. Modal changes in traditional Lithuanian singing: Diachronic aspect has a lot in common with our research, it was interesting to see their approach. Another highlight of the conference was the whole session organized by Klaus-Peter Brenner around Mbira music.

Rainer Polak gave a talk titled ‘Swing, Groove and Metre. Asymmetric Feels, Metric Ambiguity and Metric Transformation in African Musics’. He showed how research about rhythm in jazz research, music theory and empirical musicology ( amongst others) could be bridged and applied to ethnic music.

The overview Eleanore Selfridge-Field gave during her talk Between an Analogue Past and a Digital Future: The Evolving Digital Present was refreshing. She had a really clear view on all the different ways musicology and digital media can benifit from each-other.

From the concert programme I found two especially interesting: the lecture-performance by Margarete Maierhofer-Lischka and Frauke Aulbert of Lotofagos, a piece by Beat Furrer and Burdocks composed and performed by Christian Wolff and a bunch of enthusiastic students.


~ ICMC 2012 - Sound to Scale to Sound, a Setup for Microtonal Exploration and Composition

Logo Universiteit UtrechtAt this years ICMC Conference, ICMC 2012 we presented a paper describing a way to experiment with tone scales and how to use Tarsos as a compositional tool. What follows are some pointers to the presentation, paper and to other interesting talks that were presented there.

ICMC 2012 was organized in Ljubljana from the 9 to 14 septembre and had a very dense program of talks, posters, presentations, demos and concerts.

Since 1974 the International Computer Music Conference has been the major international forum for the presentation of the full range of outcomes from technical and musical research, both musical and theoretical, related to the use of computers in music. This annual conference regularly travels the globe, with recent conferences in the Americas, Europe and Asia. This year we welcome the conference to Slovenia for the first time.

Sound to Scale to Sound, a Setup for Microtonal Exploration and Composition

Our contribution to the conference was a paper titled Sound to Scale to Sound, a Setup for Microtonal Exploration and Composition.

If you want to cite our work, this BibTeX entry is included for your convenience:

1
2
3
4
5
6
7
8
@inproceedings{cornelis2012sound_to_scale,
  author     = {Olmo Cornelis and Joren Six},
  title      = {{Sound to Scale to Sound, a Setup for Microtonal Exploration and Composition}},
  booktitle  = {{Proceedings of the 2012 International Computer Music Conference,
               (ICMC 2012)}},
  year       = {2012},
  publisher = {The International Computer Music Association}
}

Program highlights

What follows are a number of pointers to my personal program highlights.

Verena Thomas presented two very well polished software tools. One to detect patterns in scores, called motifviewer and a tool to search in score databases in a multi-modal way. The Probado tool does score-to-audio alignment and much more.

Gibber is an impressive live-coding environment with an easy syntax. Since it is all done with javascript you can start playing with it immediately. Overtone Another live-coding environment, presented at the conference by Sam Aaron, was equally impressive. It is programmed using the Closure language.

At ICMC there were a number of tools to assist in composition. One of those is The Bach Project, by Andrea Agostini. Togheter with CatART by Diemo Swartz it forms a very expressive platform to work with sound, which was demonstrated by Aaron Einbond and Christopher Trapani in their paper titled Precise Pitch Control In Real Time Corpus-Based Concatenative Synthesis. Diemo Swartz presented work on Audio Mosaicing, it can be seen as a follow-up to AuidioGuild by Ben Hackbarth.

I also got to know the work by Thomas Grill, on his website a nice piece of software can be found a Python implementation of the Non Stationary Gabor Transform. Another software system I got to know is the functional signal processing programming language FAUST

My personal highlights of the concert programme include the works by Johannes Kreidler, Aura Pon, Daniel Mayer, Alexander Schubert and the remarkable performance by Dexter Ford. The concept behind Soundlog by Johannes Kretz was also interesting.


~ Analytical Approaches To World Music - Microtonal Scale Exploration in Central Africa

At the 2012 AAWM conference we presented a way to explore tone scales in the music of Central Africa. Since the audience consisted of (ethno)musicologists, the main focus of the presentation was on the applicication part, the technical aspects were only briefly mentioned.

The extended abstract can be consulted: Towards the tangible: microtonal scale exploration in Central-African music

The conference program itself was very diverse and interesting.


~ Guest Lecture at MIT - Ethnic Music Analysis: Challenges & Opportunities - Tarsos as a Case Study

Thursday the 3th of May I gave a guest lecture titled ‘Ethnic Music Analysis: Challenges & Opportunities’ it featured Tarsos as a Case Study. The goal was to identify the difficulties when dealing with ethnic music and to show a possible approach, the approach implemented by Tarsos.

The invitation to give the guest lecture came from Michael Cuthbert who is one of the driving forces behind music21. The audience was a small group of double majors in both musicology and computer science: the ideal profile to gather useful feedback.


~ Kinderuniversiteit - Muziek onder de microscoop!

Zondag 18 december 2011 gaf ik een workshop voor de Gentse kinderuniversiteit. Het thema van de kinderuniversiteit was Muziek onder de microscoop. De teaser voor de workshop is hier te vinden:

Logo kinderuniversiteitWORKSHOP – Muziek (ont)luisteren op de computer
Is het mogelijk om piano te spelen op een tafel? Kan een computer luisteren naar muziek en er van genieten? Wat is muziek eigenlijk, en hoe werkt geluid?
Tijdens deze workshop worden de voorgaande vragen beantwoord met enkele computerprogramma’s!

Concreet worden enkele componenten van geluid (en bij uitbreiding, muziek) gedemonstreerd met computerprogrammaatjes gemaakt in het conservatorium:

  • Geluidssterkte: een decibel-meter met een bepaalde drempelwaarde. Probeer zo luid mogelijk te doen en zie hoe moeilijk het is om, eens een bepaald niveau bereikt is, in decibel te stijgen.
  • Toonhoogte: een klein spelletje om toonhoogte aan te tonen. Probeer zo juist mogelijk te zingen of te fluiten en vergelijk je score.
  • Percussie: dit programma reageert op handgeklap. Hoe kan je het onderscheid maken tussen bijvoorbeeld een fluittoon en handgeklap?

De foto’s hieronder geven een sfeerbeeld.


~ Software for Music Analysis

Friday the second of December I presented a talk about software for music analysis. The aim was to make clear which type of research topics can benefit from measurements by software for music analysis. Different types of digital music representations and examples of software packages were explained.

software for music analysis

Following presentation was used during the talk. (ppt, odp):

  • Sonic Visualizer: As its name suggests Sonic Visualizer contains a lot different visualisations for audio. It can be used for analysis (pitch,beat,chroma,…) with VAMP-plugins. To quote “The aim of Sonic Visualiser is to be the first program you reach for when want to study a musical recording rather than simply listen to it”. It is the swiss army knife of audio analysis.
  • BeatRoot is designed specifically for one goal: beat tracking. It can be used for e.g. comparing tempi of different performances of the same piece or to track tempo deviation within one piece.
  • Tartini is capable to do real-time pitch analysis of sound. You can e.g. play into a microphone with a violin and see the harmonics you produce and adapt you playing style based on visual feedback. It also contains a pitch deviation measuring apparatus to analyse vibrato.
  • Tarsos is software for tone scale analysis. It is useful to extract tone scales from audio. Different tuning systems can be seen, extracted and compared. It also contains the ability to play along with the original song with a tuned midi keyboard .

To show the different digital representations of music one example (Liebestraum 3 by Liszt) was used in different formats:

  • Tartini

    Tartini

  • Melodic Match

    Melodic Match

  • Sonic Visualizer

    Sonic Visualizer

  • Tarsos

    Tarsos

  • Digital music representations

    Digital music representations

  • Software for music analysis

    Software for music analysis


~ Tarsos at 'Study Day: Tuning and Temperament - Insitute of Musical Research, London'

Tarsos LogoThe 17th of Octobre 2011 Tarsos was presented at the Study Day: Tuning and Temperament which was held at the Institue of Music Research in Londen. The study day was organised by Dan Tidhar. A short description of the aim of the study day:

This is an interdisciplinary study day, bringing together musicologists, harpsichord specialists, and digital music specialists, with the aim of exploring the different angles these fields provide on the subject, and how these can be fruitfully interconnected.

We offer an optional introduction to temperament for non specialists, to equip all potential listeners with the basic concepts and terminology used throughout the day.


~ Tarsos presentation at 'ISMIR 2011'

Tarsos LogoOlmo Cornelis and myself just gave a presentation about Tarsos at the at the 12th International Society for Music Information Retrieval Conference which is held at Miami.

The live demo we gave went well and we got a lot of positive, interesting feedback. The presentation about Tarsos is available here.

It was the first time in the history of ISMIR that there was a session with oral presentations about Non-Western Music. We were pleased to be part of this.

The peer reviewed paper about our work: Tarsos – a Platform to Explore Pitch Scales in Non-Western and Western Music is available from the ISMIR website and embedded below:


~ Tarsos at 'WASPAA 2011'

Tarsos LogoDuring the the demo session of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics a demonstration of Tarsos was given. During the demo, the 18th of Octobre 2011 feedback was gathered.

During the conference I met interesting people and their work:

Carnatic Music Analysis: Shadja, Swara Identification and Raga Verification in Alapana using Stochastic Models
Ranjani HG, Arthi S, Sreenivas TV

Simulation of the Violin Section Sound based on the analysis of orchestra performance
Jukka Pätynen, Sakari Tervo, Tapio Lokki

Another interesting paper is Informed Source Separation: Source Coding Meets Source Separation. A demo of this can be found here.


~ Bruikbare software voor muziekanalyse

Op dinsdag vier oktober 2011 werd een les gegeven over bruikbare software voor muziekanalyse. Het doel was om duidelijk te maken welk type onderzoeksvragen van bachelor/masterproeven baat kunnen hebben bij objectieve metingen met software voor klankanalyse. Ook de manier waarop werd besproken: soorten digitale representaties van muziek met voorbeelden van softwaretoepassingen werden behandeld.

digitale muziek representatie

Voor de les werden volgende slides gebruikt (ppt, odp):

De behandelde software voor klank als signaal werd al eerder besproken:

  • Sonic Visualizer: As its name suggests Sonic Visualizer contains a lot different visualisations for audio. It can be used for analysis (pitch,beat,chroma,…) with VAMP-plugins. To quote “The aim of Sonic Visualiser is to be the first program you reach for when want to study a musical recording rather than simply listen to it”. It is the swiss army knife of audio analysis.
  • BeatRoot is designed specifically for one goal: beat tracking. It can be used for e.g. comparing tempi of different performances of the same piece or to track tempo deviation within one piece.
  • Tartini is capable to do real-time pitch analysis of sound. You can e.g. play into a microphone with a violin and see the harmonics you produce and adapt you playing style based on visual feedback. It also contains a pitch deviation measuring apparatus to analyse vibrato.
  • Tarsos is software for tone scale analysis. It is useful to extract tone scales from audio. Different tuning systems can be seen, extracted and compared. It also contains the ability to play along with the original song with a tuned midi keyboard .
  • music21 from their website: “music21 is a set of tools for helping scholars and other active listeners answer questions about music quickly and simply. If you’ve ever asked yourself a question like, “I wonder how often Bach does that” or “I wish I knew which band was the first to use these chords in this order,” or “I’ll bet we’d know more about Renaissance counterpoint (or Indian ragas or post-tonal pitch structures or the form of minuets) if I could write a program to automatically write more of them,” then music21 can help you with your work.”

Om aan te duiden welke digitale representaties welke informatie bevatten werd een stuk van Franz Liszt in verschillende formaten gebruikt:

  • Digitale registratie van muziek

    Digitale registratie van muziek

  • Muziekanalyse software

    Muziekanalyse software


~ PeachNote Piano at the ISMIR 2011 demo session

PeachNote Piano SchemaThe extended abstract about PeachNote Piano has been accepted as a demonstration presentation to appear at the ISMIR 2011 conference in Miami. To know more about PeachNote Piano come see us at our demo stand (during the Late Breaking and Demo Session) or read the paper: Peachnote Piano: Making MIDI instruments social and smart using Arduino, Android and Node.js. What follows here is the introduction of the extended abstract:

Playing music instruments can bring a lot of joy and satisfaction, but not all apsects of music practice are always enjoyable. In this contribution we are addressing two such sometimes unwelcome aspects: the solitude of practicing and the “dumbness” of instruments.

The process of practicing and mastering of music instruments often takes place behind closed doors. A student of piano spends most of her time alone with the piano. Sounds of her playing get lost, and she can’t always get feedback from friends, teachers, or, most importantly, random Internet users. Analysing her practicing sessions is also not easy. The technical possibility to record herself and put the recordings online is there, but the needed effort is relatively high, and so one does it only occasionally, if at all.

Instruments themselves usually do not exhibit any signs of intelligence. They are practically mechanic devices, even when implemented digitally. Usually they react only to direct actions of a player, and the player is solely responsible for the music coming out of the insturment and its quality. There is no middle ground between passive listening to music recordings and active music making for someone who is alone with an instrument.

We have built a prototype of a system that strives to offer a practical solution to the above problems for digital pianos. From ground up, we have built a system which is capable of transmitting MIDI data from a MIDI instrument to a web service and back, exposing it in real-time to the world and optionally enriching it.

A previous post about PeachNote Piano has more technical details together with a video showing the core functionality (quasi-instantaneous USB-BlueTooth-MIDI communication). Some photos can be found below.

  • PeachNote Piano enclosure

    PeachNote Piano enclosure

  • PeachNote Piano in action

    PeachNote Piano in action

  • PeachNote Piano Schema

    PeachNote Piano Schema

  • PeachNote Piano Arduino Shield

    PeachNote Piano Arduino Shield

  • PeachNote Piano assembled

    PeachNote Piano assembled


~ PeachNote Piano

PeachNote Piano SchemaThis is about PeachNote Piano, a project only tangentially related to Tarsos. PeachNote Piano aims to capture as many piano practice sessions as possible and offer useful services using this data. The system does this by capturing and redirecting MIDI events on a Bluetooth enabled smartphone. It is done together with Vladimir Viro and builds on the existing PeachNote infrastructure.

The schema – right – shows the components of the PeachNote Piano system. At the bottom you have a MIDI keyboard connected to the MIDI-Bluetooth-bridge. A smartphone (middle left) receives these MIDI events via Bluetooth and controls the communication to the server (top left). An alternative path goes through a standard computer (top right).

The Arduino based Bluetooth to MIDI bridge is an improvement on the work by Peter Brinkmann. The video below shows communication between USB-MIDI, Bluetooth MIDI and MIDI IN/OUT ports.

As an example application of the PeachNote Piano system we implemented a “Continue a Melody” service which works as follows: a user plays something on a keyboard, maybe just a few notes, and pauses for a few seconds. In the meantime, the server searches through a large database of MIDI piano recordings, finds the longest fuzzy match for the user’s most recent input, and, after a short silence on the users part, starts streaming the continuation of the best matched performance from the database to the user. This mechanism, in fact, is way of browsing a music collection. Users may play a known leitmotiv or just improvise something, and the system continues playing a high quality recording, “replying” to the musical proposition of the user.

More technical details

The melody matching is done on the server, which is implemented in Javascript in the Node.js framework. The whole dataset (about 350 hours of piano recordings) resides in memory in two representations: as a sequence of pitches, and as a sequence of “densities” at the corresponding places of the pitch sequence dataset. This second array is used to store the rough tempo information (number of notes per second) absent in the pitch sequence data.
By combining the two search criteria we can achieve reasonable approximation of the tempo-aware search without its computational complexity.

The implementation of the hardware is based on the open-source electronic prototyping platform Arduino. Optocoupled MIDI ports (IN/OUT) and the BlueSMiRF Bluetooth module were attached to the main board, as can be seen in the middle left block of the schema. The BlueTooth module is configured to use the Serial Port Profile (SPP) which emulates RS-232. The software on the Arduino manages bi-directional, low latency message passing between three serial ports: USB (through an FTDI chip), BlueTooth and the hardware MIDI-IN and OUT port.

The standard Arduino firmware has been replaced with firmware that implements the “Universal Serial Bus Device Class Definition for MIDI Devices”: when attached to a computer via USB, the Arduino shows up as a standard MIDI device, which makes it compatible with all available MIDI software. The software client currently works on the Android smartphone platform. It is represented using the middle right block in the schema. The client can send and receive MIDI events over its Bluetooth port. Pairing, connecting and communicating with the device is done using the Amarino software library. The client communicates with the Peachnote Piano server using TCP sockets implemented on the Dalvik Java runtime.

  • Finished enclosure

    Finished enclosure

  • Building a Bluetooth - MIDI shield

    Building a Bluetooth - MIDI shield

  • Assembled

    Assembled

  • PeachNote Piano in action

    PeachNote Piano in action

  • PeachNote Schema

    PeachNote Schema


~ Tarsos at 'IPEM Open House'

IPEM Logo The 25th of May 2011 Tarsos was present at the IPEM open house.

IPEM (Institute for Psychoacoustics and Electronic Music) is the research center of the Department of Musicology, which is part of the Department of Art, Music and Theater Studies of Ghent University. IPEM provides a scientific basis for the cultural and creative sector, especially for music and performance arts, and does pioneering research work on the relationship between music body movement and new technologies. The institute consists of an interdisciplinary team but also welcomes visiting researchers from all over the world. One of its aims is also to actively try and validate research results during public events and by means of user studies.

There are close relations between the Royal Conservatory Ghent, where we are located, and IPEM. There is more information about the IPEM open house available. Also available is the program of the IPEM open house 2011

Tarsos was presented using a poster, a flyer and a live demo. The poster about Tarsos and the flyer about Tarsos are both downloadable.


~ Tarsos at 'First International Workhop of Folk Music Analysis'

Tarsos LogoTarsos will be presented at the First International Workhop of Folk Music Analysis: Symbolic and Signal Processing:

“The First International Workhop of Folk Music Analysis: Symbolic and Signal Processing, will take place in Athens, Greece, on the 19th and 20th of May, 2011. … The purpose of the event is to gather reseachers who work in the area of computational folk music analysis, using symbolic or singal processing methods, to present their work, discuss and exchange views on the topic.”

The submitted abstract about Tarsos can be downloaded. A presentation about Tarsos is also available.


~ ARIP: Programma

Tarsos Logo Tijdens ARIP wordt Tarsos voorgesteld en kan het zelfs uitgetest worden. Volgens de ARIP website : “Op 18 maart 2011 stellen de verschillende onderzoekers hun onderzoeksproject voor: geen afgewerkte producten of eindresultaten, maar wel momentopnames. Samen bieden ze een interessante en intrigerende kijk in wat het onderzoek in ons Conservatorium te bieden heeft”.

Het tekstje over Tarsos:

Tarsos is een softwareprogramma waarmee toonhoogte in muziek onderzocht kan worden in onder meer etnische muziek. Tarsos heeft nu ook nieuwe, real-time mogelijkheden. Geluid afkomstig van een microfoon wordt meteen geanalyseerd en onmiddellijke feedback toont een gespeeld of gezongen interval. Het maakt kwarttonen of andere (ongewone) intervallen visueel duidelijk.
Tijdens ARIP zal er kort wat uitleg gegeven worden over Tarsos en mag je een demo verwachten. Zangers of instrumentalisten die willen experimenteren met intonatie zijn ook meer dan welkom om Tarsos zelf uit te proberen.

arip logo

~ Tarsos at 'Lectures on Computational Ethnomusicology'

Tarsos Logo This monday the 28th of February Tarsos will be presented at “Lectures on Computational Ethnomusicology” which is held at Izmir, Turkey. The presentation of Tarsos is available here.

Next to the interesting programme it is a great opportunity to meet Baris Bozkurt who has been working on similar research but applied to Makam music.

On wednesday the second of March there is a small seminar at Electrical and Electronics Eng. Dept. of İzmir Yüksek Teknoloji Enstitüsü where Tarsos will be presented also.


~ ARIP: Artistic Research In Progress

Voor ARIP heb ik een artikel over Tarsos geschreven. Het motiveert kort de bestaansredenen van Tarsos – een applicatie om toonhoogtegebruik in muziek te analyseren – en het artikel geeft een overzicht van de werking van Tarsos aan de hand van een voorbeeld. Hieronder zijn multimediale aanvullingen te vinden bij het artikel.

Ladrang Kandamanyura (slendro pathet manyura), zo heet het muziekfragment dat gebruikt werd in het artikel als voorbeeld van een stuk muziek met een ongewone (voor onze westerse oren toch) toonladder. De CD waarop het stuk te vinden is, is bij wergo te verkrijgen. Een fragment van 30 seconden is hier te beluisteren:

Het fragment kan je ook downloaden om zelf te analyseren met Tarsos.

Ladrang Kandamanyura (slendro pathet manyura)
Courtesy of: WERGO/Schott Music & Media, Mainz, Germany, www.wergo.de and Museum Collection Berlin
Lestari – The Hood Collection, Early Field Recordings from Java (SM 1712 2)
Recorded in 1957 and 1958 in Java – First release

Tarsos Live

Het onderstaande videofragment geeft aan hoe Tarsos gebruikt kan worden om in real time stemmingen te meten. Geluid afkomstig van een microfoon wordt dan meteen geanalyseerd en onmiddellijke feedback toont een gespeeld of gezongen interval. Het maakt kwarttonen of andere (ongewone) intervallen visueel duidelijk. Tarsos kan zo gebruikt worden door zangers of strijkers die willen experimenteren met microtonaliteit. Ook kan het handig zijn voor etnomusicologisch veldwerk: bijvoorbeeld om kora (een Afrikaanse harp) toonladders te documenteren.

  • Spectrogram

    Spectrogram

  • Annotaties

    Annotaties

  • Ambitus

    Ambitus

  • Toonladder

    Toonladder


~ Latex & Version Control Introduction

Latex Logo

Monday, I’ll give a small presentation about Latex and Version Control for the research team at the University College Gent, Faculty of Music. The idea is to give a pragmatic overview of working with Latex and version control. The presentation about Latex & Version control can be downloaded. The presentation itself is created using Latex and the source of the presentation is also available. A good description of Latex can be found here:

LaTeX (pronounced “latech”) is a document preparation system for high-quality typesetting based on, and succeeding TeX formatting. It is a very popular format in academia, as it allows advanced document formatting capabilities not found in other common document formatting systems. Some of these capabilities include table figure notations, bibliography formatting (see BibTeX), and an advanced macro language.

Some useful references:


~ Seminar - Research on Music History and Analysis

This post contains links to genuinely useful software to do signal based audio analysis.

  • Sonic Visualizer: As its name suggests Sonic Visualizer contains a lot different visualisations for audio. It can be used for analysis (pitch,beat,chroma,…) with VAMP-plugins. To quote “The aim of Sonic Visualiser is to be the first program you reach for when want to study a musical recording rather than simply listen to it”. It is the swiss army knife of audio analysis.
  • BeatRoot is designed specifically for one goal: beat tracking. It can be used for e.g. comparing tempi of different performances of the same piece or to track tempo deviation within one piece.
  • Tartini is capable to do real-time pitch analysis of sound. You can e.g. play into a microphone with a violin and see the harmonics you produce and adapt you playing style based on visual feedback. It also contains a pitch deviation measuring apparatus to analyse vibrato.
  • Tarsos is software for tone scale analysis. It is useful to extract tone scales from audio. Different tuning systems can be seen, extracted and compared. It also contains the ability to play along with the original song with a tuned midi keyboard .

Melodic Match is a different beast. It does not work on signal level but processes symbolic audio. More to the point it searches through MusicXML files – which can be created from MIDI-files. See its website for use cases. Melodic Match is only available for Windows.

During a lecture at the University College Gent, Faculty of Music these tools were presented with some examples. The slides and a zip-file with audio samples, slides and software are available for reference. Most of the time was given to Tarsos, the software we developed.

Olmo Cornelis also gave a lecture about his own research and how Tarsos fits in the bigger picture. His presentation and the presentation with audio are also available here.

  • Sonic Visualizer

    Sonic Visualizer

  • BeatRoot

    BeatRoot

  • Tarsos

    Tarsos

  • Tartini

    Tartini

  • Melodic Match

    Melodic Match


~ Tarsos Presented at the "Perspectives for Computational Musicology" Symposium

Tarsos Logo Yesterday Tarsos was publicly presented at the symposium Perspectives for Computational Musicology in Amsterdam. The first public presentation of Tarsos, excluding this website. The symposium was organized by the Meertens Institute on the occasion of Peter van Kranenburg’s PhD defense.

The presentation included a live demo of a daily build of Tarsos (a Friday evening build) which worked, surprisingly, without hiccups. The presentation was done by Olmo Cornelis. This was the small introduction:

Tarsos – a Platform for Pitch Analysis of Ethnic Music
Ethnic music is a vulnerable cultural heritage that has received only recently more attention within the Music Information Retrieval community. However, access to ethnic music remains problematic, as this music does not always correspond to the Western concepts of music and metadata that underlie the currently available content-based methods. During this lecture, we like to present our current research on pitch analysis of African music. TARSOS, a platform for analysis, will be presented as a powerful tool that can describe and compare scales with great detail.

To give Tarsos a try ou can start Tarsos using JAVA WebStart or download the executable Tarsos JAR-file. A JAVA 1.5 runtime is required.